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VOLUME 30 October, 1962 NUMBER 4 

THE STABILITY OF A COMPETITIVE ECONOMY: 
A SURVEY ARTICLE 

BY TAKASHI NEGISHI1 

Some of the recent contributions to the problem of the stability of a 
competitive economy are surveyed. Emphases are laid on the uses of economic 
laws such as Walras' law, the homogeneity of demand functions with respect 
to prices, etc., in proving stability, and on the development of models of non- 
tatonnement processes of adjustment in the market. 

1. INTRODUCTION 

THE THEORY of the general competitive equilibrium, as developed by Leon 
Walras [64], has recently been reformulated in terms of fairly advanced 
mathematical methods. The first problem studied extensively was concerned 
with the conditions under which a competitive equilibrium exists for a model 
of general equilibrium. Among contributions to the existence problem, Wald 
[63], Arrow and Debreu [5], McKenzie [35], Nikaido [48], Gale [18], and 
Negishi [44] may be cited. The optimality problem of a competitive equi- 
librium was also investigated by, e.g., Arrow [2], Debreu [15, 16], and, in 
greater detail, by Hurwicz [27]. However, it was not until the paper by Arrow 
and Hurwicz [6] was published that the stability problem of a competitive 
economy was investigated systematically within the framework of general 
equilibrium analysis. 

The purpose of the present article is to survey some of the more important 
recent contributions to the theory of the stability of a competitive economy. 
After a general discussion of the nature of the stability problem (Section 2) 
and a short review of the earlier literature (Section 3), I shall proceed to 
define a model (Section 4) and present various results on the stability of the 

1 This is the second in a series of survey articles which Econometrica is publishing with 
the support of the Rockefeller Foundation. The first was: H. S. Houthakker, "The 
Present State of Consumption Theory," Vol. 29, No. 4 (October, 1961). 

A part of this work was supported by the Office of Naval Research (Contract 
Nonr-255 (50), NR-047-004) at Stanford University and read at the Naples meeting 
of the Econometric Society, September, 1960. The author expresses his thanks to 
Professors K. J. Arrow, M. Fukuoka, K. Hamada, F. H. Hahn, R. Komiya, E. 
Malinvaud, Y. Murakami, M. Morishima, Y. Oishi, R. Tachi, H. Uzawa, T. Watanabe 
and a referee for their helpful suggestions and encouragement. He is also grateful to 
Miss Laura Staggers for typing the original manuscript. 
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636 TAKASHI NEGISHI 

competitive equilibrium for this model (Sections 5-10). The main line of 
argument can be broadly summarized as follows. 

Most of the studies of the stability of the price adjustment process in a 
competitive economy that have so far been developed deal with the tatonne- 
ment process in which no actual exchange takes place until equilibrium is 
reached (Section 4).2 The first systematic treatment of this problem is given 
in Arrow and Hurwicz [6] and in its sequel, Arrow, Block, and Hurwicz [4]. 
Extensions and generalizations are given in Arrow and Hurwicz [7, 8, 9], 
McKenzie [36, 37], Morishima [40], Nikaido [49], Nikaido and Uzawa [50], 
and Uzawa [58, 60]. Among several interesting results obtained, the most 
important is the global stability of the gross substitute case due to Arrow, 
Block, and Hurwicz [4] (Section 5).3 4It may be emphasized that economic 
laws such as Walras' law, the homogeneity of the demand function with 
respect to all prices, etc., played important roles in the proofs of stability. A 
suggestive contribution by Allais [1], which has been almost neglected so 
far, must also be noted (Section 6). 

Scarf [55] offered examples of instability (Section 7). Therefore, the 
tatonnement processes can be stable only under some restrictions, such as 
gross substitutability, etc. The tatonnement process is, however, not the 
only way to equilibrium. Is there any other price adjustment process which is 
generally stable, or at least more stable than the tatonnement process? The 
stability of various non-t atonnement or barter processes (Section 4), in which 
trade is actually carried out according to certain rules at disequilibria, has been 
studied recently by Hahn [22, 23], Hahn and Negishi [24], Negishi [45], and 
Uzawa [59]. It is interesting to note that these non-tatonnement processes 
are generally more stable than the tatonnement processes (Sections 8-10). 

2. THE NATURE AND RELEVANCE OF THE STABILITY PROBLEM 

In the first part of this section (2.1), various ways of dynamizing the 
general equilibrium model will be explained, and the one we are going to be 
concerned with in this article will be specified. The next subsection (2.2) will 
be devoted to a discussion of the need for stability analysis. Finally, various 
conceDts of stability will be Dresented verbally in Section 2.3. 

2 For the tatonnement process, see Walras [64], Patinkin [52, pp. 377-385] and 
Uzawa [61]. 

3 The local stability of the same case is obtained independently by Hahn [21], 
Arrow and Hurwicz [6] and Negishi [43]. See also Newman [46, 47], in which a syste- 
matic survey of the analysis of local stability is given. 

4 Among results, other than for the gross substitute case, the two-commodity case, 
the dominant diagonal case, the quasi-integrable case, the weak axiom of revealed 
preference case, and the "no trade" at equilibrium case, etc. are important. See 
Arrow and Hurwicz [6], Arrow, Block, and Hurwicz [4], McKenzie [36], Nikaido [49], 
Nikaido and Uzawa [501, and Uzawa [58, 60]. 
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STABILITY OF A COMPETITIVE ECONOMY 637 

2.1. The stability problem is concerned with the question of what happens 
to the time paths of economic variables, such as prices and outputs, which are 
generated from certain dynamic adjustment processes. If they converge to 
some equilibrium position, the relevant dynamic process is said to be stable. 
As Samuelson [54] observed, we cannot consider the stability of a system, 
say, a competitive economy, without analyzing its dynamic adjustment 
process. Different adjustment processes have different stability properties, 
so that a system involving one adjustment process may be stable while 
another system, identical in the static aspect with the former but coupled 
with a different adjustment process, may not.5 

The static theory of general equilibrium, developed by Walras [64], 
Cassel [14], Hicks [26], Leontief [31], etc., can be dynamized in many 
different ways. Each dynamic system presents its own stability problem, 
though all can be analyzed by common mathematical tools. Most of the 
dynamic models so far developed may be grouped into one of the following 
two types: one type contains the "magnificent" dynamics of trade cycles 
and economic growth such as the Hicksian microscopic model of trade cycles 
[26, ch. XXIV], the growth model of von Neumann [62], and Leontief's 
dynamic system [32], and the other type contains the dynamics of the market 
clearing process such as the Walrasian tatonnement [64] and the Hicksian 
process of adjustment to the temporary equilibrium within a "week" [26]. 

The models of trade cycles and economic growth generate time paths of 
outputs, capital stocks, and prices, which are of a dynamic equilibrium type, 
in which the supply of and demand for each commodity are assumed to be 
continuously equal in every market. This abstraction from the market 
clearing process, which may be considered as a shorter run phenomenon than 
the one under consideration, may be justified if the former is rapidly damped 
and can be supposed to have worked out its effects.6 

On the other hand, the stability analyses of a competitive economy, cited 
in Section 1, and to be reviewed in this article, are concerned with the 
behavior of the short run market clearing adjustment process towards 
temporary equilibrium within a "week" in the sense of Hicks [26], i.e., 
within the unit period of consumption and production planning. There are 
models in which the market clearing adjustment process is extended over 
several Hicksian weeks (Arrow [3], Arrow and Hurwicz [8], Arrow and 

5 For the methodological aspect of the stability problem, see Samuelson [54, ch. 
XI] and Newman [47], to which this section owes very much. 

6 Samuelson [54, pp. 330-331]. It is also possible to disregard the slow long run 
changes and concentrate upon the shorter run process. For example, in a short run 
Keynesian model of income determination, it is often assumed that the stock of 
capital is fixed. Sargan [53] considered both long run and short run processes at once 
in a generalized Leoutief model. 
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638 TAKASHI NEGISHI 

McManus [12], Arrow and Nerlove [13], and Enthoven and Arrow [17]). But 
such an extension is possible only under such special assumptions as that 
the behavior of individuals in the current period is not affected by that of 
past periods. 

It has often been assumed in the model of the market clearing process 
-and in this article we shall assume-that prices move in accord with the 
excess demand (demand minus supply) in each market7 and that the demand 
for and supply of commodities are functions of prices. The latter assumption 
is again justified if individual consumption and production plans respond 
rapidly relative to price changes. 

In the case of constant returns to scale, however, the demand for and 
supply of commodities from a firm cannot be well-behaved functions of 
prices. Since in this case profit is proportional to scale at any given set of 
prices, the profit-maximizing scale may be infinite, if positive profits are 
possible at some level. Or it may be that there are zero profits at all scales, in 
which case profit maximization does not define the behavior of firms. Finally, 
if profits are negative at all positive scales, the optimal scale is zero. This 
is why Walras [64], while assuming instantaneous utility maximization by 
the consumer, did not prescribe instantaneous profit maximization for 
firms. He assumed that the price change has the same sign as the excess 
demand, and that the change in the scale of production has the same sign as 
the marginal profitability of scale. This case, with lagged adjustments of 
producers, was recently treated by Morishima [40]. The excess demand model 
with lagged consumers' adjustments was, on the other hand, treated by 
Arrow and Hurwicz [6]. 

The Marshallian process in which the response of output is governed by 
the excess demand price (demand price minus supply price) is not a market 
clearing process within a "week" but a long run process requiring several 
weeks in the sense of HIicks. Hicks [26, p. 62] argued, moreover, that the 
Marshallian process is appropriate to monopoly rather than to competition. 

2.2. Let us now consider the reason for stability analysis. The existence of 
general equilibrium is rigorously proved in the literature cited in Section 1 
above. Does the existence proof not assure that equilibrium is really 
established? Here are the reasons why, in addition to the existence proof of equi- 
librium, some representation of the adjustment outside equilibrium must be 
provided, and its stability required, if the model of a competitive economy 
is to be entertained as a good description of the facts. 

As Walras F641 observed, the equilibrium we obtain mathematically or 

7 Koopmans ([28 p. 179]) is critical of this model on the ground that it is difficult 
to identify this assumption about market behavior with any individual behavior. See 
Section 4 below. 
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STABILITY OF A COMPETITIVE ECONOMY 639 

theoretically is established empirically or practically in the market by the 
mechanism of competition. At the beginning of every period, markets are 
not necessarily in equilibrium, i.e., the supply of and demand for commodi- 
ties are not necessarily equal, and the market clearing adjustment process 
begins to work. The competition of buyers and sellers alters prices. Prices 
rise for those commodities whose demand exceeds supply, and fall for those 
commodities where the reverse holds. We know from experience that under 
this process prices usually do not explode to infinity or contract to zero, but 
converge to an equilibrium such that the supply of and demand for commo- 
dities are equal. Hence, the process which we choose to represent reality 
must display the same stability. We must therefore search for intuitively 
appealing and widely acceptable conditions or restrictions on the model that 
are sufficient to ensure stability. 

The equilibrium once established in this way is continuously subject to 
changes and disturbances, such as of taste, technology, resources, and 
weather. Suppose the system, which has been in equilibrium, is thrown out 
of it by some of those changes or disturbances. It is known empirically that the 
economy is in fact fairly shock-proof. Dynamic market forces are generated 
which bring the economy back to equilibrium when it is perturbed, i.e., 
there exists a stable adjustment process when the economy is out of equilib- 
rium. Realistic economic models should contain such a dynamic equilibrating 
process. 

Furthermore, theories of trade cycles and of economic growth that are of 
the dynamic equilibrium type cited in Section 2.1 assume that temporary or 
short run equilibrium is easily and quickly established in each period and 
rapidly recovered when disturbed by shocks. Studies of the stability of the 
market clearing process do, therefore, offer to these theories some assurance 
concerning their fundamental assumptions. 

Since welfare economics assures us that under certain assumptions a 
competitive equilibrium can be identified with an economic optimum (the 
optimality problem cited in Section 1), we may conclude that the competitive 
process towards market equilibrium is also a computational device for solving 
the problem of optimal resource allocation (Arrow and Hurwicz [10], 
Marschak [34]). Indeed, Pareto [51] compared the market to a computing 
machine. Of course, the system of simultaneous equations describing the 
general equilibrium can be solved by some centralized procedure involving 
the use of computing machines rather than by the market which solves the 
problem under decentralization. A completely centralized organization 
would, however, require a capacity for the storage and processing of tech- 
nological and other information that exceeds anything likely to be available. 
This is the reason why Lange [29] concluded that accounting prices in a 
socialist economy should be determined by a decentralized trial and error 
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640 TAKASHI NEGISHI 

process in which the Central Planning Board performs the functions of the 
competitive market. Stability, then, is necessary for the competitive market 
mechanism to be a satisfactory practical device for solving the problem of 
optimum resource allocation.8 

So far we have been concerned with the reasons why models should 
satisfy sufficient conditions for stability-conditions which ensure the 
stability of the dynamic process. Most of the results so far obtained in the 
analysis of stability, which we are going to review in this article, are also 
concerned with sufficient conditions. One would, however, also like to know 
necessary conditions. Hicks [26, p. 62] argued that if stability is taken for 
granted as an assumption of regularity, one can deduce, from the necessary 
condition for stability, rules of comparative statics regarding the way in 
which the price system will react to changes in taste or resources-called 
the Correspondence Principle by Samuelson [54]. Newman [47] correctly 
argued that such a use of necessary conditions might be illegimate, since we 
can not assume a priori that our model is stable just because the world is 
stable; It cannot be denied, however, that laws of comparative statics and 
of stability have a good deal to do with each other. Recently, Morishima [41] 
demonstrated this again. 

2.3. In this article we shall be concerned mainly with global stability, or 
stability in the large, which means that economic variables generated from 
the dynamic process approach some equilibrium in the limit as time becomes 
infinite, regardless of their initial values. Samuelson [54] called this perfect 
stability of the first kind. But there are a few other concepts of stability, 
some of which will be referred to in this article. 

If equilibrium points are not distinct from each other but cover a whole 
line or region, we shall be concerned with quasi-stability which implies that 
variables converge to the set of equilibrium points, or more technically, that 
every limit point of the process is an equilibrium (Uzawa [60]). To prove 
quasi-stability, it is sufficient to show that there is some continuous function 
of the relevant variables which is decreasing through time at disequilibria 
and that the domain of the variables is bounded, i.e., they do not go to posi- 
tive or negative infinity. It is intuitively clear that stability is obtained if 
the distance in any sense from the present position to an equilibrium, or to 
a set of equilibria, is decreasing through time.9 

The decrease of a continuous function of the variables, which is used in 

8 Also, convergence of the process to some neighborhood of the equilibrium must 
be rapid enough for practical purposes. 

9 Distance from point x to point y is a nonnegative real valued continuous function 
D(x, y) such that D(x, y) = 0 if and only if x = y, D(x, y) = D(y, x), and D(x, z) + 
D(z, y) > D(x, y) for any third point z. Any function which satisfies these conditions 
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STABILITY OF A COMPETITIVE ECONOMY 641 

the proof of quasi-stability, is a sort of mathematical extension of the con- 
cept of decreasing distance.10 Global stability follows from quasi-stability 
when equilibrium is unique, or when equilibria are distinct from each other. 

If the dynamic process is converging only when initial values of the varia- 
bles are close to equilibrium values, we speak of local stability or stability of 
the first kind in the small. To prove stability in the small of a dynamic 
process, it is sufficient to consider a linear system approximating the process 
in the neighborhood of an equilibrium point. If equilibrium is unique, global 
stability implies local stability, but not vice versa. Sometimes global 
stability may seem to be rather too stringent a condition to impose on the 
system and, as Newman [47] states, not always to be preferred to local 
stability, since in every period the market clearing process starts from the 
historically given values of variables which are close to equilibrium rather 
than from "prix cries au hasard," and most of the disturbances or shocks 
in the economy are likely to be small in fact. Local stability, however, is 
sometimes unsatisfactory, since it is quite possible for there to be multiple 
equilibria, none of which is completely stable from the local point of view 
(attracting all neighboring points), while the system is, in its entirety, globally 
stable (approaches some equilibrium). In the study of global stability, we 
are concerned with the behavior of a whole system, say, a competitive econo- 
my, rather than with the stability of a particular equilibrium. 

There are several other concepts of stability which we shall not be con- 
cerned with in this article. Among them, perhaps the most important is 
stability in the sense of Lyapunov [33]. This implies that variables remain 
close to equilibrium, without necessarily converging to it, when perturbed 
slightly.11 Samuelson's stability of the second kind [54] corresponds to this. 
In the theory of trade cycles, we have another concept of stability, that of 
orbital stability which means that the time paths of the variables converge 
not to a point but to the path of some periodic motion, i.e., in the long run 
the same cycle is repeated (Goodwin [19]). In growth theory, relative 
stability, i.e., the convergence of the ratio of variables to that of the balanced 
growth path, is important (Solow and Samuelson [56]). 

3. HISTORICAL REMARKS 

Before dealing with recent contributions, it may not be out of place to 

is called a distance, though the most natural concept is provided by Euclidean distance. 
The distance of x from the given equilibrium x can be considered a continuous function 
o%f 4- 

10 This method of proof of stability is originally due to Lyapunov [33]. See also 
Hahn [25]. 

11 Scarf's example [55] of instability is in fact stable in the sense of Lyapunov, 
though not in the sense of our definition of stability. 
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642 TAKASHI NEGISHI 

give a brief historical account on some of the early work on the stability 
analysis of a competitive economy. 

Walras [64] offered two methods for solving the equations of the general 
economic equilibrium, the theoretical or mathematical solution, and the 
empirical or practical solution of the market. The former was merely to 
count the number of unknowns and of equations. This was criticized, among 
others, by Wald [63]. Recent studies on the existence of an equilibrium, cited 
in Section 1, solved this problem completely. The latter solution is that of 
tatonnement, a trial and error process representing the market mechanism 
under free competition.12 The stability of tatonnement, in which prices change 
in accord with excess demands, was not successfully shown by Walras, except 
for the case of the exchange of two commodities. The Walrasian stability 
condition for the case of two commodities is that if the price of one commodi- 
ty in terms of the other (i.e., numeraire) is above the equilibrium price, there 
is an excess supply for that commodity, and if below equilibrium, an excess 
demand. Since the price rises if there is excess demand and falls if there is 
excess supply in the tatonnement, this stability condition implies that there 
are forces to bring the price back to the equilibrium. 

The stability condition, given by Walras in the two commodity case, was 
generalized by Hicks [26] for the many commodity case. In order for equilib- 
rium to be perfectly stable, according to Hicks, a rise of the price of any 
commodity above the equilibrium must be accompanied by an excess 
supply of that commodity, and a fall below the equilibrium by an excess 
demand, so that a force is generated to bring the changed price back to 
equilibrium. This behavior must hold regardless of the state of other markets, 
i.e., whether or not other prices are unchanged or adjusted so as to maintain 
equilibrium in the relevant markets. More technically, the sign of the 
derivative of excess demand of a commodity with respect to its own price 
must be negative, even when any arbitrary subset of other prices are kept 
unchanged while the remaining ones are adjusted so as to maintain equilib- 
rium in the respective markets. This implies that the sign of the principal 
minors of the matrix, 

-all a. 

A-*an .... ay....:.,_ 

12 Goodwin [20] insisted that Walrasian tatonnement is merely a mathematical 
device to solve the equilibrium problem and not a representation of the adjustment 
process of competitive markets, an interpretation with which we can not agree. See 
Patinkin [52, pp. 377-385]. 
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be alternatively negative and positive.13 Here ai1 is the partial derivative of 
the excess demand of the ith commodity with respect to the price of the jth 
commodity evaluated at equilibrium. When a matrix satisfies this condition, 
it is often called Hicksian. The Hicksian stability condition, though useful 
in comparative statics, remained static in nature since it was obtained 
without fully exploring the dynamics of the market adjustment process. 
Contributions by Mosak [42] and Sono [57] were also of the same static 
variety. 

It is Samuelson [54] who, criticizing Hicks, first observed that we cannot 
consider the stability problem without specifying a dynamic adjustment 
process. He formulated the problem as a set of dynamic equations and gave 
mathematical conditions for the convergence of its solution, i.e., the stability 
of the equilibrium. For example, he considered the stability of a differential 
process, in which the instantaneous rate of change of the price of any good is 
proportional to its excess demand, the latter being regarded as a function of 
all prices. If excess demands are approximated linearly at equilibrium and 
speeds of adjustment (ratios of the rate of change of price to excess demand) 
are set equal to one, the stability condition is that the real part of all the 
characteristic roots of the matrix A above should be negative. This true 
dynamic stability condition is generally different from the Hicksian con- 
dition. The latter is neither necessary nor sufficient for the former. 

Since the Hicksian condition is useful in comparative statics, the relation- 
ship between dynamic stability and Hicksian stability was explored by, 
e.g., Samuelson [54], Lange [30], Metzler [38] and Morishima [39], with the 
following results. 

(i) If the matrix A is symmetrical, i.e., aij = a1i, the Hicksian condition 
and the true dynamic condition coincide with each other (Samuelson, Lange). 

(ii) If the matrix A is quasi-negative-definite,14 both Hicksian and 
dynamic stability conditions are satisfied (Samuelson). 

(iii) The Hicksian condition is necessary if the dynamic process is stable 
regardless of the values of speeds of adjustment (Metzler). 

(iv) If the matrix A has all off-diagonal elements positive (ai; > 0, i # j), 
i.e., all goods are gross substitutes, the Hicksian and the dynamic conditions 
coincide (Metzler). 

Samuelson and his followers did not, however, take full advantage of the 
implication of the assumptions underlying the perfectly competitive model.15 

13 In the case of two commodities, the Hicksian condition coincides with the 
Walrasian condition. 

14 A matrix A is quasi-negative-definite if [A + A']/2 is negative-definite, where 
the prime implies transposition. See Samuelson [54]. 

15 See Arrow and Hurwicz [6]. Perhaps Allais [1] who worked independently of 
Samuelson and others may be an exception in this respect. 
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Also, in most cases they examined stability in a small neighborhood of the 
equilibrium, i.e., local stability, by the method of linear approximation. 

The nature of the competitive economy in its relation to the stability of 
the price adjustment process was first fully explored by Hahn [21], Arrow 
and Hurwicz [6], and Negishi [43]. It was proved, by use of Walras's law 
(Hahn, Arrow, and Hurwicz) or the homogeneity of demand functions with 
respect to all prices (Negishi), that if all goods are gross substitutes, i.e., 
aij > 0, for all i :A j in the matrix A, not only do Hicksian and dynamic 
conditions coincide, as stated above, but also that dynamic stability itself 
necessarily holds. Our understanding of stability in the large, i.e., global 
stability, with due attention to the nonnegativity of prices,16 was developed 
by Arrow, Block, and Hurwicz [4]17 and many others, such as McKenzie 
[37], Nikaido [49], Nikaido and Uzawa [50], etc. 

4. CONSTRUCTION OF THE MODEL 

4.1. We are now going to concentrate attention on a particular model in 
order to make our discussion more precise. In this subsection let us construct 
a static model of a pure exchange economy and derive the aggregate demands 
for commodities as functions of all prices. A model of the dynamic processes 
will be given in the next subsection. We confine ourselves to the case of a 
pure exchange economy for two reasons. First, almost all the essential 
problems in the stability analysis occur even in this simplest model of the 
economy; and, secondly, many of the works we are going to survey are 
studies of this case. The results in Sections 5 and 6 can, however, be extended 
to an economy with production, since the assumptions utilized in those 
sections concern aggregate excess demands which are derived as functions 
of all prices, when production plans react rapidly and well-behavedly, i.e., 
continuously to changes of prices (Section 2.1). Results in Sections 7-10, 
on the other hand, depend essentially on the properties of a pure exchange 
economy and no attempt has been made so far to extend them to models 
with production. 

Suppose certain amounts of the initial stocks of commodities are distrib- 
uted to each individual participant in the economy. Since there is no pro- 
duction, total stocks of commodities in the economy remain unchanged. 
Each individual strives to maximize his utility through exchanges of 
commodities subject to the price ratios which are given in the market. As a 
result, for each commodity a quantity is demanded which is a function of all 

16 The nonnegativity problem in the study of the gradient method (a method to 
solve the programming problem) is developed in Arrow, Hurwicz, and Uzawa [11]. 

17 The method used to prove stability in Arrow, Block, and Hurwicz [4] is generalized 
in Uzawa [60] from the point of view of Lyapunov [33]. 
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prices. If this quantity happens to be equal to the total existing amount in 
the economy for each commodity, market prices are called equilibrium 
prices relative to the initial distribution of commodities. It must be noted 
that different initial distributions generally generate different equilibrium 
prices. Although this model is very simple, two fundamental economic laws 
can be derived: Walras' law and the homogeneity of demand functions with 
respect to prices. The former implies that the value of total demand of all 
commodities is always equal to that of total supply, while the latter implies 
that demand is not affected by a proportionate change of all prices. 

Let there be n individual participants labelled i 1,..., n and m com- 
modities labelled j 1,..., m in the economy. Let us use the following 
notation: 

P1 is the price of the jth commodity; 
Xi; is the holding of the jth commodity by the ith individual, assumed to 

be nonnegative; 
X1 is the total amount of the jth commodity, a constant, iXi X 

Xij is the demand for the jth commodity by the ith individual, assumed 
to be nonnegative; 

X? is the total demand for the jth commodity, YiXiX X= ; 
1i is the income (wealth) of the ith individual, 1i- EjPjXqi; and 
Ui is the utility of the ith individual, a function of Xi1,..., Xim.18 

It is assumed that the demand for the jth commodity by the ith individual 
Xi1(Pl,..., Pm,hi) is the unique solution obtained by maximizing the utility 
function Ui(Xii,..., Xim) subject to the budget constraint EjPjXij Ii. 

An equilibrium price vector P _ (P1,..., Pm) for a given distribution 
matrix of the stock of commodities among individual participants 

F.: ..... Xij X 

-xni .... Xnm_ 

is defined as a positive price vector P (P1,..., Pm) which satisfies the 
condition of equality of demand and supply for each commodity, 

(e) Xj (P, X) = Xj, for all j. 

Such an equilibrium is known to exist under certain conditions which 
may include the positiveness of X. 

18 We shall also admit the assumptions which are usually imposed on utility func- 
tions, such as differentiability, non-saturation (i.e., for any x, there is some y such that 
U(y) > U(x)), and strict quasi-concavity (i.e., for any x, the set of y such that 
U(y) > U(x) is strictly convex). See Arrow and Debreu [5], Hicks [26]. 
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From the definition of Xij, it follows that X? is positively homogeneous of 
degree zero in P, so that 

(h) Xi(AP,X) Xi (P,X), for any 2 > 0, 

and if P is an equilibrium, AP is also an equilibrium for any 2 > 0. 
Summing up the individual budget constraints, we have Walras's law, 

(W) EjPjXj Ejpjxj .19 

4.2. A general economic equilibrium was represented above by a set of 
conditions (e). Such an equilibrium is established in the market through 
competition among individual participants. We may introduce various 
models of dynamic processes to represent this phenomenon. In this article, 
we are concerned with two differential equation models, to be called respec- 
tively the tatonnement and the non-tatonnement processes. 

A tatonnement process of price adjustment is governed by the differential 
equation system,20 

(T) dPtj = Xj(P, N:) - j (j = ,..) dt 

where t denotes time and X remains constant through time. This is a simpli- 
fied version of a modern formulation of the Walrasian tatonnement (Samuel- 
son [54, p. 270])21 which represents the well known "law of supply and 
demand": the price of a commodity rises if demand exceeds supply and 

19 Although in the following we state (h) and (W) as independent assumptions, it 
must be noted that they are both derived from the assumption of utility maximization 
of individual participants. 

20 This system is called the non-normalized system. A normalized system with 
numeraire is 

dPj 
dt = Xj (j= 1...,- 1), 

Pm = 1 . 

For the normalization and its relation to stability, see Arrow, Block, and Hurwicz 
[4]. A system 

dPj = a -X), aj > 0 (constant) 
dt 

can be reduced to (T) by a suitable choice of units of measurement of commodities. 
See Arrow and Hurwicz F61. 

21 A formulation by a difference equation system, which is close to the original 
Walrasian version of tatonnement, is given in Uzawa [61]. See also Allais [1]. In the 
original version of tatonnement due to Walras [64], it is assumed that the adjustment 
takes place not simultaneously in all markets but successively in one market after 
another. 
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STABILITY OF A COMPETITIVE ECONOMY 647 

falls in the opposite case. In the case of the ideally well organized market, 
such as the stock exchange, grain markets, and fish markets, we may imagine 
for each commodity an auctioneer who, as an incarnation of the competitive 
force in the market, raises the price of the commodity at a rate proportional 
to the difference between demand and supply. Each individual regards the 
market price announced by the auctioneer as a given datum to which he must 
adjust himself, although the announced price is the result of the decisions of 
all individuals in the market. Each individual then reports his decision on 
demand to the auctioneer. In the case of a less organized market, we must 
admit that it is a serious question as to whose behavior is expressed by (T). 
The existing literature is quite ambiguous in this respect (see the discussion 
by Koopmans [28, p. 179]). 

In this provisional process, recontract is always possible and no actual 
trade of commodities among individual participants is permitted (Walras 
[64] suggests the use of tickets), until the equilibrium is reached, i.e., until 
the process itself is terminated. Since there are no exchange transactions in 
the process, the distribution of commodities X remains constant over time, 
and we may omit it from the demand function. 

A solution of this process through the initial price vector Po is an m- 
dimensional function P(t; Po) of time such that 

P(O ; PO) pO 

and the jth component P1 of P satisfies the identity 

dP1 -orXt[P dt X- P(t; PO)]X fort O . 

On the other hand, a non-tatonnement process is governed by the differen- 
tial equation system, 

dPj_Xj(P, g) X. xi - m, 
dt 

(NT)X 
dtXi = F1i(P, X) (i= 1,..., n; j= 1,...,m). 

In this process, the distribution of commodities X is no longer constant 
since some trade out of equilibrium is permitted according to certain trans- 
action rules which are incorporated in the form of the functions Fi1. Functions 
Fij denote that opportunities for individuals to change their stocks of com- 
modities Xi0 by exchanges with other individuals are assumed to depend 
on prices and on the distribution of commodities in the economy. 

Because we are discussing the case of pure trade, in which total amounts of 
commodities, the Xi's are constant, we must impose on the functions Fq 
the conditions 
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(C) iFij (P, X) 0 (j= 1,..., Im), 

so that we have EX 0.22 

A solution of this process through the initial price vector Po and the 
initial distribution of commodities Xo is an m(n + 1) dimensional function 
[P(t; Po, Xo), X(t; Po, Xo)] of time such that 

P(O ; P0 go) Po 

X(O ; Po, Xo) Xo 

and 

dPt 
- 

X[P(t; P?, X), X(t; P? ?)] X 

dj - Fi[P(t ; Po, go), X(t ; Po, Xo)] 

for t > 0 and all i, j. 
In a non-tatonnement process (NT), not only prices but also the distribu- 

tion of commodities are adjusted so as to satisfy the condition of the 
equilibrium (e). On account of the redistribution of incomes among individual 
participants due to changes of prices in the midst of trading (Hicks [26, 
pp. 127-129]), the competitive equilibrium reached by a non-tatonnement 
process is generally different from the one reached by a tatonnement 
process. In the case of non-tatonnement (NT), a price vector P and a 
distribution matrix X is called an equilibrium if 

(e') X1 (P, X) = X; for allj. 

It must be noted that, on account of (W), either in (T) or in (NT) the 
solution P(t) remains bounded. Differentiating Z1P2(t), we have from (W), 

d(Z;Pj(t)) - 2Z1Pj(t)P1(t) 
= 

2Z1P1(Xj - Xi) ? 0 
dl 

and, therefore, 

E;P2(t) = Z1P?(O) for any t. 

On the other hand, in (NT), X(t) remains bounded since we have from (C), 

LX0T(t) = X1 for any t. 

A differential system is said to be globally stable if, for any given initial 
values, the solution of the system through those values converges to some 
equilibrium of the system. In the case of (T), this means limt, P(t) P* 
where X;(P*) = X; for all j; and, in the case of (NT), limt ,,,P(t) P*, 
together with limt ,OOX(t) X* where X1 (P*, X*) = X1 for all j. A system 

22 A dot on the variable signifies d/dt. 
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STABILITY OF A COMPETITIVE ECONOMY 649 

is said to be quasi-stable if, for any initial values, every limit point of the 
solution of the system is an equilibrium: in the case of (T), lim, "P(t,) =P 

where X;(P*) = Xi for all j, and t -> oo as v -> oo; in the case of (NT), 
limv,'0P(tv) = P*, limv,oo X(tv) X* where Xi(P*, X*) = X1 for all j, 
and tv -> oo as v -> oo. Since the relevant variables P(t) andX(t) are bounded, 
it is sufficient for quasi-stability that there exists a continuous function 
V{P(t)} (or V {P(t), X(t)}) which is strictly decreasing through time unless 
XX X1 for all j. If equilibrium is unique, or if the equilibria are distinct 
from each other, quasi-stability coincides with global stability (Uzawa [60]). 

In the following three sections we discuss the stability and the instability 
of the tatonnement process, and in the last three sections we treat the non- 
tatonnement process. 

5. GROSS SUBSTITUTABILITY (ARROW, BLOCK, AND HURWICZ) 

This section is devoted to one of the most important results obtained in 
studies of the stability of the tatonnement process (T), i.e., the global 
stability under gross substitutability due to Arrow, Block, and Hurwicz [4].23 

5.1. The basic idea of the gross substitutability concept (Metzler [38], 
Mosak [42]) is this: If the price of one commodity goes up while all other 
prices remain unchanged, there will be an increase in demand for every 
commodity whose price has remained constant. Mathematically, 

(S) ,Dp > O, for all P; j # k. 

It must be noted that (S) implies DXj/lPj < 0, since from (h) we have 
Xc (DX;/DPk) Pk 0 for all j. Therefore, in the case of two commodities, 
gross substitutability implies the Walrasian condition for stability (Section 3). 
The reader should be careful not to confuse gross substitutability with (net) 
substitutability, i.e., the positive effect of a change in the price of 
commodity k on the demand for commodity j when real income is properly 
compensated (Hicks [26]). 

An example of gross substitutability may be found in Arrow and Hurwicz 
[6, p. 550]. Suppose the utility function of each individual is of the form 

Ui(Xii, .-, Xim) = EjixlogXi1 for all i, 

where oxi1's are constants such that Nij > 0, for all i, j, and Ejxi; - 1. Then 

23 Extensions of the stability theorems for the case of weak gross substitutability 
(aXI/aPk > 0 for j # k) are given in Arrow and Hurwicz [8, 9], McKenzie [37], and 
Uzawa [60]. 
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we have 

where Ii = E1P1Xwi, and from this we obtain 

aXjj > 0 for all P > 0, X > 0, j k. 

Gross substitutability (S) is obtained by summing over i. 
The balance of this subsection is devoted to a lemma due to Arrow, Block, 

and Hurwicz [4] concerning the uniqueness of the equilibrium price vector. 
Of course, the equilibrium price vector cannot be unique in the strict sense 
of the word. By (h), if P is an equilibrium, AP for any A > 0 is also an 
equilibrium. It will, however, be shown, under gross substitutability, that 
the equilibrium price ratios, or the equilibrium price ray, are unique, i.e., if 
P is an equilibrium, every other equilibrium can be expressed as AP for 
some A > 0. This uniqueness of the equilibrium ray is important for the 
proof of stability. 

Now we state: 

LEMMA 1: Under assumfptions of positive homogeneity (h) and gross substitut- 
ability (S) of the demand function, the equilibrium price vector P is determined 
uniquely up to a scalar multiple. 

A sketch of the proof is given below (Arrow, Block, and Hurwicz [4, 
Lemma 4]). 

Suppose both P, P (P = AP for any 2 > 0) satisfy (e), and PJ/PJ = min- 
(P1/1P). By (h) we may replace P by P such that P = yP, u > 0 and 
Pj = Pj. Then P < P and hence by, (S) and (e), Xj(P) < XJ(P) = Xi, 
which contradicts the assumption that P is an equilibrium (Wald [63]). 

P2 

0 P1~~~ 

FIGURE 1 
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STABILITY OF A COMPETITIVE ECONOMY 651 

In the case of two commodities, m = 2, the argument above can be seen 
graphically (see Figure 1). Here we have J = 1, since PI/Pi < P2/P2. From 
(h) we have Xj(P) = Xj(P). Comparing P with P, we have, from (S), 
X1(P) < Xl(P), since P2 is higher than P2, while P1 = P.. Therefore, 
X1(P) # X1 and P does not satisfy (e). Condition (e) is satisfied only by 
price vectors which are expressed as P = AP for some positive scalar A. 

From this lemma, we know that, under assumption (S), there exists a 
unique equilibrium ray such as OP in the figure. Since in (T) we have 
E1P2(t) = 1Pi(O) as is stated in Section 4.2, the equilibrium we can 
reach, if possible, from the given initial value P(O) is also unique. 

If gross substitutability (S) is assumed, we can show the stability of the 
tatonnement process in various ways. Since equilibrium is unique for given 
initial conditions, quasi-stability implies global stability. To prove the former, 
it is sufficient to find a continuous function which is decreasing through 
time at disequilibria. Different choices of such a function offer different 
proofs of the same theorem, the stability of the gross substitute case. The 
first method of proof due to Arrow, Block, and Hurwicz ([4, Theorem 2]) 
will be given in Section 5.2. The Euclidean distance or its square in the 
price space (the sum of squares of the difference between prices and equilib- 
rium prices) will serve there as the function which decreases through time. 
The second, intuitively more clear, method of proof, also due to Arrow, Block, 
and Hurwicz ([4, Theorem 1]) will be given in Section 5.3. Distance in terms 
of the maximum norm in the price space (the maximum of the differences 
between prices and their equilibrium values) will be shown to be decreasing 
through time in this proof. Finally, a proof once suggested by Allais [1] and 
developed later independently by McKenzie [37] that the sum of the 
absolute values of the excess demands multiplied by prices decreases through 
time will be discussed in Section 6. Although these are alternative proofs 
for the same result, all of them are worth reporting since different informa- 
tion on the behavior of prices in the market is given by each of them. 

5.2. In this subsection, following a lemma concerning the relation between 
excess demands and prices under gross substitutability (S), the first proof 
of the stability of tatonnement (T) under gross substitutability is given. 

By the use of both homogeneity (h) and Walras' law (W), an important 
lemma is obtained under the assumption of gross substitutability (S). 

LEMMA 2: Under gross substitutability (S), homogeneity (h), and Walras' 
law (W), we have 

EfPo PXj(P) > P f> > 0. 

for any P >0, P =A APfor any A >O0. 
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This lemma says that the sum of excess demands at any disequilibrium 
price situation weighted by equilibrium prices is always positive. In other 
words the weak axiom of revealed preference (Samuelson [54]) is satisfied 
between the equilibrium point and any disequilibrium point. 

In the case of two commodities, m = 2, we can show this graphically (see 
Figure 2). 

X2 

d 

b 

0 C X1 

FIGURE 2 

(a = {X1(P), X2(P)} = (X), X2); b = {X1(P), X2(P)}) 

The point a represents the total stocks of the two commodities and, by 
definition, total demands at equilibrium prices P. The point b, corresponding 
to demands at P, is on the line cd which represents the price ratio of P and 
passes through a, since we have from (W), 

PiXI(P) + P2X2(P) = P1X1 + P2Y2. 

If P is represented by steeper lines than cd as in the figure, b must be on the 
line segment ac from (S). Then, comparing points a and b, we have 

P1XI(P) + P2X2(P) > P1X1 + P2X2, 

and the lemma holds. 
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By the use of this lemma, the stability of the tatonnement process (T) is 
proved.24 

THEOREM 1: Under the assummption of gross substitutability (S), homogeneity 
(h) and Walras' law (W), the taitonnement process (T) is globally stable. 

A sketch of the proof is as follows (Arrow, Block, and Hurwicz [4]): 
Consider the square of the distance from the variable point P(t) of the 

solution (T) to an equilibrium P in terms of the Euclidean norm as 

D2(t) ` E(P;(t) p )2 

where P is normalized as 

EJP;(0) p = 

since we know the equilibrium P is determined uniquely only up to a scalar 
multiple (Lemma 1) and 

Zjp2(t) = Z1pY(0) 

for all t > 0. 
The convergence of P(t) to the equilibrium P is shown by differentiating 

D2(t), using Walras' law (W) and Lemma 2; thus 

12(t) 2 1P1(P1 - PF) 2 2EX(Pj - P1)(X1(P) -Xi) 
- 2 1Pj(Xj(P) X) < 0, forP # P, 

which implies that D2(t) is decreasing through time at disequilibria. 
It must be noted in the above argument that both homogeneity (h) and 

Walras' law (W) play essential roles. 

5.3. After establishing another lemma on the excess demands under gross 
substitutability (S), we shall give below the second proof of the stability of 
the tatonnement (T). 

The following lemma is obtained by the assumptions of gross substitutabil- 
ity (S) and homogeneity (h). 

LEMMA 3: Under assumptions of gross substitutability (S) and homogeneity 
(h),for any P >0, P 0 APfor any A >0, 

Pj /Pj = max1 P1/]P, P' /PJ" = min1 P1/P1 

implies respectively that 

Xi, (r) 
wr 

Xi <\ 0, _iP -Xl > 

24 Stability is proved in the same way as in Theorem I for the case of the weak 
axiom of revealed preference and that of "no trade" at equilibrium. See Arrow, Block, 
and Hurwicz [4]. 

This content downloaded from 128.97.27.21 on Fri, 23 Aug 2013 17:06:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


654 TAKASHI NEGISHI 

A sketch of the proof (Arrow, Block, and Hurwicz [4, Lemma 3]) is given 
below. 

Let us define 
P*= (P/Pj)P. 

Then by hypothesis, P* < P and Pt*, = P1'. Hence, by (e), (h), and (S), 

Xx (P) = Xj (P*) < Xx (P) = X . 
Similarly, with 

P* = (Pj /Pj )P' 

P P** p p** 

we have X1, (P) = X; (P**) > Xy'(P) = X, 

This lemma says that the commodity whose price is the maximum 
relative to the equilibrium price has a negative excess demand and, according 
to the tatonnement (T), its price is decreasing, while the commodity whose 
price is the minimum has a positive excess demand and its price is increasing. 
In the case of two commodities, m = 2, the above argument can be shown 
graphically (see Figure 3). We have j' - 1, j" = 2, since P1/P1 > P2/P2. 

Pa 

0 p 

FiGURE 3 

Since demand is positively homogeneous, Xi(P) - Xl(P*). Compare P* 
with P. While the price of the first commodity remains constant, the price 
of the second commodity goes up. Therefore we have 

X1(P) =X(P*) < _i(-P) _ _i. 

Similarly we have 

X2(P)= X2(P**) > X2(P) = X2. 
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By using this lemma, the stability of (T) is proved. 

THEOREM 2: Under the assumptions of homogeneity (h) and gross substitutabil- 
ity (S) of the demand function, the tdtonnement process (T) is globally stable.25 

A sketch of the proof (Arrow, Block, and Hurwicz [4]) is given below. 
Let us define the distance from the variable point P(t) of the solution for 

the tatonnement process (T) to an equilibrium P5, such that 

EjP (O) = 

in terms of the maximum norm as 

Dm(t) = maxj {j[P;(t) -P1]/PjJ} 

If this function is differentiable, we have from Lemma 3, 

Pm (t) - [Xi (P) - Xc] /PIc , 
where k is such that 

Pkl/P7c - I = maxf!Pj/Pj - I 
and L)m(t) < 0. 

With some complications due to the fact that Dm does not exist everywhere, 
we are able to show that Dm(t) decreases through time, and the convergence 
of the solution P(t) to an equilibrium P is established. 

It should be noted that the positive homogeneity of the demand function 
in prices (h) plays an important role in the above argument. 

In the case of two commodities, m = 2, the convergence is shown graphi- 
cally (see Figure 4). 

P2 

b L 

0 a Pi 

FIGURE 4 

25 We can extend this theorem for the case of nonlinear price adjustment, 

Pj = H1[X1(P) -J], 

where Hj is a sign preserving function such that sign (H1) = sign (X1 - X1). See 
Arrow, Block, and Hurwicz [4]. 
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Remembering that XjPj2(t) is constant, we know that P(t) must be on 
the curve ab (a part of a circle around 0). Pi is maximum and P2 is minimum 
relative to P. From Lemma 3, there is an excess supply of the first commo- 
dity and an excess demand for the second commodity. Therefore, P, goes 
down and P2 goes up, so that P(t) moves in the direction of P and finally 
gets there. 

6. A CONTRIBUTION BY ALLAIS 

A brief comment may be appropriate on the significance of the rather 
neglected contribution to this field by M. Allais [1, vol. 2, pp. 486-489] in 
1943. 

The stability of the Walrasian tatonnement is discussed. It must be 
mentioned first that the original model of the tatonnement due to Allais is 
not our tatonnement process (T) in the sense that price adjustment is assumed 
to take place not simultaneously in all markets but successively in one market 
after another (see footnote 21 above). Secondly, it must be noted that 
Allais did not assume gross substitutability (S) explicitly but made assump- 
tions which, taken together, are essentially the same as the gross substitu- 
tability (S). 

Admitting these points, we can reconstruct Allais' argument in terms of 
our own model (T) under assumptions (S) and (W).26 It will be shown that 
Allais' argument, if properly reformulated, is the proof of the stability by 
the method of Lyapunov [33], i.e., by the use of a function decreasing 
through time. 

Consider the sum of the absolute value of the excess demand of each 
commodity multiplied by its price, 

Da(t) = EjIP(Xj-Xi)j. 
By Walras' law (W), 

Da(t) = 2 Eje+Pj(Xj - Xj) 2 EjeJ-Pj(Xj -X) 

where J+ is the set of those j's for which X1 - Xj > 0, and J- is the set of 
those j's for which X1 - X1 < 0. When the derivative of Da(t) exists, 

Da) = EkeK+ a1j I Pj(Xj - ) I dPk + ENK ape dPk 

2kK 
a{ - E16j-P1(X1 - X1)} -P + 2 Eke 

- a{ E16j+ P1(X1 - X1)} 
-5 = 2 z1ceK+ ip ck + 2kaK aPk 

where K+, K- are defined similarly as J+, J-, i.e., K+ is the set of those k's 
for which Xk - Xk > 0 and K- is the set of those k's for which Xk - Xk < 0. 

26 A more rigorous discussion under weaker assumptions is given in McKenzie [37]. 
See also Negishi [45]. 

This content downloaded from 128.97.27.21 on Fri, 23 Aug 2013 17:06:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STABILITY OF A COMPETITIVE ECONOMY 657 

Because K+ and J-, K- and J+ are non-overlapping, respectively, we have 
j # k in the above expression of Da(t) and by (S), aXj/aPk > 0. Then we 
have Di,a(t) < 0 at disequilibrium, since -Pk > 0 for k K+ and -Pk < 0 for 
k E K- from the construction of the process (T). 

With some complications due to the fact that 1)a(t) does not exist every- 
where, we are able to show that lDa(t) decreases along with the solution of 
(T) and P(t) converges to equilibrium. 

7. EXAMPLES OF INSTABILITY (SCARF) 

In the preceeding sections, an example of a stable tatonnement process 
is shown. Is the tatonnement process generally stable without any restric- 
tions such as gross substitutability? The answer is no, because we have an 
example of instability due to Scarf [55]. 

Consider the case of three individuals, n = 3, and three commodities, 
m = 3. Let the utility function of the first, second, and third individuals, 
respectively, be 

U1(X11, X12, X13) min (Xll, X12), 
U2(X21, X22, X23) min (X22, X23), 
U3(X31, X32, X33) = min (X33, X31), 

and the holding of commodities be 

Xj= 1 fori-j, 
Xi =O fori#j. 

Each individual desires only two commodities, which are perfectly (intrinsi- 
cally) complementary, i.e., desired only in the fixed ratio (one to one in this 
case). For example, the indifference curves of the first individual for the 
first two commodities are of the form shown in Figure 5, and the first 

/ 

,/ 

// 

// 

X12 

0 5 

FIGURE 5 
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individual has no desire for the third commodity. Routine calculations show 
that the excess demand for each commodity is, 

- P2 P3 
Xi1- 1-ipi + p2 + p3 + pi' 

- -P3 Pi 
P 2 + P3 + Y; + P2 

_ _Pi 
P2 

P3+P1 +P2+P3 

and that P1 = P2 = P3 is the only equilibrium possible. 
Consider a solution P(t) of the tatonnement process (T) with initial 

prices (PI (O), P2 (0), P3 (0)) such that 

P1(0) + P2(0) + P3(O) 3, 
and 

P1(0) P2(0) P3(0) # 1I 

From Walras's identity, we know that I1P2(t) 3 for t > 0 and the only 
possible equilibrium is (1, 1, 1). On the other hand, by differentiating with 
respect to time, it can be shown that 

P1 (t) P2(t) P3(t) = P1(0) P2(0) P3(0) 

for t > 0, and P(t) never reaches equilibrium. 
In this example, since EjP2j(t) = E1P(0), prices still remain close to 

equilibrium if initially they are sufficiently close to it. Therefore, stability 
in the sense of Lyapunov (Section 2.3) is obtained although global stability 
is not established. 

It is known that the stability condition is satisfied if asymmetrical income 
effects are neglected.27 In this example, on the contrary, substitution effects 
do not exist and income effects are dominating. It has been long conjectured 
that instability, if any, might be due to the income effect, and in Scarf's 
example this is exactly the case. 

One might object to the special properties of the above mentioned example. 
An example of a more general type is also given in Scarf [55]. Though it is 
difficult to characterize precisely those markets that are unstable, it is 
rather clear that instability is a relatively common phenomenon. 

Judging from these examples, we must admit that the tatonnement 
process (T) is not perfectly reliable as a computing device to solve the 
system of equations for general economic equilibrium (e). It is possible to 

27 For the relation of stability to the substitution and income effects of price 
changes, see Hicks [26, p. 317]; Samuelson [54, p. 270]; and Arrow and Hurwicz [6]. 
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interprete these instability examples as showing that the difficulty is 
essentially due to the assumption of tatonnement (no trade out of equilibrium) 
and to conclude that the tatonnement process (T) does not provide a correct 
representation of the dynamics of markets. See Hahn [23a]. 

8. NON-TATONNEMENT PROCESSES 

The failure of the general stability of the tatonnement process (T) suggests 
the study of the stability of the non-tatonnement processes (NT) (Section 
4.2). 

Let us assume as a transaction rule that no transaction on credit is 
permitted, i.e., all transactions should be of the barter type in the non- 
tatonnement process. Since in a barter exchange, to get something one 
must offer something else of the same value in return, such an exchange 
does not alter the value of the commodity stocks held by an individual, i.e., 
his income. It may therefore be appropriate to assume the following restric- 
tions on the functions F (see Negishi [45]). 

(B) jP,Xi3= Ej>Pj Fij(P,X) O (i=1,...,n). 

In this section it will be shown that any non-tatonnement process, 

dPJ X (P, X)-Xj ( j =), 
(NT) 

dt 

)dXi - Fij (P, X) (j = 1,..., m; i = 1,..., n), dt 

which satisfies the condition of barter exchange (B) is quasi-stable under gross 
substitutability (S) and Walras' law (W). The stability of more special non- 
tatonnement processes with additional conditions imposed on transaction 
rules will be discussed in Sections 9 and 10. 

In Section 6, the stability of the tatonnement process is shown, following 
the method of Allais [1], by using the fact that 

Da(t) =EJ I Pi(Xi Xi) 

is decreasing along with the solution of the process. This is still true in the 
present case. Let us use the same Da(t) in the case of the non-tatonnement 
process (NT). Suppose Da(t) exists. In this case we have, 

D5a(t) = Sk ap- _iPk + i a P - Xi) 

As in Section 6, the first term of the right hand side is negative at disequilib- 
rium while the second term can be expressed as 

a ajIPjP(Xj - Xj) I Ii 
Ei Le ali to - Xi7k 
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since the dependence of X1 on Xik is through the income of the ith individual, 
_[.28 By definition 1i= PjA i;, and so a =ilaXik Pk. Since in (NT) 

Xij = Fik(P, X), we have 

ak X-k kPkFik ? 
aXik 

from the condition of barter (B). Therefore, l1a(t) < 0 again in this case. 
With some complications due to the fact that Da(t) does not exist every- 

where, we are able to show that Da(t) decreases through time and to establish 
the quasi-stability of a non-tatonnement process under assumptions (B), 
(S), (W) (see Negishi [45]). Global stability is, however, not established 
since nothing is known in this case about the uniqueness of the equilibrium 
prices and the distribution which satisfy condition (e') in Section 4.2. 

9. EDGEWORTH PROCESS 

9.1. In the previous sections, the non-tatonnement process (NT) as well 
as the tatonnement process (T) was shown to be stable under gross substitu- 
tability (S). So far, however, little has been assumed for the non-tatonnement 
(NT) process about how and why individuals exchange their stocks of 
commodities. It is expected that by adding some plausible assumptions on 
the exchange behavior of individuals, stronger results on stability may be 
established. 

Let us consider why individual participants exchange their stocks of 
commodities. Except for the purpose of speculation, people want to exchange 
so as to increase their satisfactions. It is rather plausible, therefore, to 
assume that, in the non-tatonnement process, the utility of the commodity 
stock for each individual increases through time by virtue of the exchange 
transactions. 

The Edgeworth process, so named by Uzawa [59], is defined as a non- 
tatonnement process (NT) with the following transaction rule (E): 

(E) dUj(Xj,..., Xim)/dt > 0 for all i, and dUj(Xjj,..., Xim)/dt > 0 for 
some i, if there is a distribution X' such that U(X'jj,..., X'im) >? UiX(i,.... 
Xim), E,PPjX' = ,1PjXgi, for all i, and U , X') > U (Xti,..., 
Xim), for some i; otherwise, dXi1/dt = 0 for all i, j. 

The condition (E) states that trade will take place if and only if at least 
one individual gains by exchange and no individual loses. The distribution 
of commodities X' is clearly more satisfactory for somebody and less 
satisfactory for nobody than the original distribution X. Moreover, X' can 

28 That effects of transactions at disequilibria are income effects is stated in Hicks 
[26, p. 128]. 
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be reached from X by the barter of commodities, keeping budget con- 
straints for individuals satisfied. 

An example of the Edgeworth process, (NT) with (C), (B) and (E) satisfied, 
is given below (Uzawa [59]). 

Let us define a social utility function as a weighted sum of individual 
utility functions, 

U = SWCci Ui(Xii, Xim) 

where ci is a positive constant. Let Xij be the solution for the maximization 
of the social utility subject to 

EP xij S PXij, 

E2 PjXij = EjPjXij) 
and 

Ui(Xii,. , Xim) > Ui(Xi,..., Xim) for all i, j. 

At the distribution X, everybody is clearly better off than at the distribution 
X. The individual's weight, ci, in the above social utility function may be 
interpreted as an index of his bargaining power in the exchange of commo- 
dities. 

Consider the process given by 

dPj_ 
,- 7-- Xj X2, 

dt 
(NTE) 

dtT Xij -Xj for all i,j. dt 

This implies that prices change in accord with excess demands while trades 
take place among individuals, starting from the distribution X and directed 
to the distribution X. It is easily seen that (NTE) satisfies condition (C), 

(B), and (E). 
Condition (C) implies that every solution of the process (NTE) is bounded, 

while from the assumption (E), each individual's utility increases along 
the path. It follows, as has been shown by Uzawa [59], that the Edgeworth 
process (NTE) is globally stable provided certain additional assumptions 
are satisfied.29 

9.2. It is observed that for the Edgeworth process (E), if there is no trade 

possible among individuals, i.e., Xij = 0 for all i, j, then there must exist 

29 The proofs of the stability of the Edgeworth process, as well as those of the 
Hahn process in Section 10, are not directly dependent on the assumptions (W) and (h). 
However, one may regard these assumptions as the rationale underlying the formulation 
of the processes. 
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a commodity r which has the maximum marginal utility at X relative to 
its price for all individuals: 

a i Xii - Xi)/Pr] = maxj a[U (ii _;; m) /Pj] 
aXir a~~~~~xii 

for all i. 
If this is not true, i.e., if for different individuals a different commodity 

has the maximum relative utility, then there is possible a gain for some 
individuals without causing a loss for any individual, each individual 
receiving a commodity with the maximum relative utility for him in 
exchange for other commodities, and trade among individuals must take 
place according to (E). 

Let us assume that for any such commodity r which has the maximum 
relative utility for all individuals, excess demand Xr(P, X) - Xr is positive. 
This assumption is satisfied if the utility functions are of additive form: 

U(Xii,.., Xim) = Uii(Xii) + ... + Uim(Xim); 

but it may be violated if there is a strong substitutability in the sense of 
Edgeworth and Pareto30 among commodities.3' 

By this assumption it is shown in the Edgeworth process that the function 

a Ui(Xii, -- , Xim)lPr 
DXr 

is decreasing over time when no trade is possible, i.e., X is constant, since 
its derivative with respect to time is, 

a Ui(Xi1,..., Xim) (Xr - Xr)< O 

aXir p2 

Using this fact, together with the increase of i Uj(Xjj,..., X1m) when 
trade is possible, the quasi-stability of the Edgeworth process is demon- 
strated by Hahn [23]. 

9.3. In the case of two individuals and two commodities, m = 2, n = 2, 
we can show the path of an Edgeworth process in a box diagram (Figure 6) 

30 Commodities j and k are substitutes in the sense of Edgeworth-Pareto if 
a2UIaXjaXk < 0. See Hicks [26 p. 42]. 

31 We are then in a peculiar situation where everybody wants to have more of the 
stock of commodity r with the maximum relative utility while the excess demand for 
that commodity is negative and the price falls. This may suggest the inappropriateness, 
in the case of the Edgeworth process, of the assumption that prices change according 
to excess demands in the usual sense. 
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where the commodity stocks of the first individual are measured from A, 
and those of the second, from B. X is the point corresponding to the distri- 
bution of commodities X; curves Xc and Xd are indifference curves of the 
first and second individuals, respectively, through X; and Xe is a solution 
of the Edgeworth process. Condition (E) states that every solution remains 
in the shaded area32 and terminates on the contract curve ab.33 Lines XP1 
and XP2 are price lines which represent budget constraints of both individuals 
and show the possible directions of exchanges. If the price line through X is 
always directed into the shaded area as is XP1, the stability of the process 
is self evident. If not (the case of XP2), we have to assume conditions as in 
Sections 9.2 and 9.1 that will push the price line into the shaded area. 

X 21 B 

c d ~~~~~~~~~~~~b 

X22 

A 

FIGURE 6 

10. THE HAHN PROCESS 

10.1. In the non-tatonnement process (NT), it is assumed that the 
opportunity for an individual to change his stock of commodities through 
exchange depends generally on prices and the distribution of commodities 
among individuals. In other words, the individual's opportunity to change 
his commodity stock depends on the plans of other individuals to change 
theirs. If there is a surplus of a commodity, i.e., if the total amount individuals 
want to increase their stock of this commodity is less than the amount they 
want to part with, any individual who seeks to increase his stock can easily 

32 I.e., the set of distributions at which everybody is not worse off than at the 
distribution X. 

33 The set of Pareto-optimal distributions, or, in other words, points where the 
indifference curves of two individuals are tangent one to another. 
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and quickly achieve his plan. If there exists, on the other hand, a shortage 
of a commodity, any individual who wants to dispose of his stock can easily 
and quickly do so. 

The Hahn process (Hahn [22], Hahn and Negishi [24]) is a non-tatonnement 
process (NT) with the following conditions imposed on functions F in 
addition to (C) and (B): 

(H) For all i, j, sign (Xi- Xi)= sign (X1 - Xj) if Xi; - Xij # 0; and 
if Xi - X1 = 0, then Xi - =i 0 for all i. 

The implication of condition (H) is this: With prices given, all possible 
exchanges are instantaneously effected on a "first come, first served" basis. 
Thus, if Xj - X1 < 0, all individuals demanding the jth commodity will 
be able to satisfy their demand, while some supplying individuals will be 
left with unsold goods. Therefore, after exchange, there remain only negative 
individual excess demands (positive excess supplies) and sign (Xi- Xi ) 
sign (Xj - X1) < 0. If X1 - X1 > 0, then all supplying individuals will 
find they can supply all they had planned, while some demanding individuals 
will have their demands unsatisfied, with the result that sign (Xij - XTi) 
sign (Xj - Xi). 

The stability of the Hahn process, a non-tatonnement process (NT) with 
conditions (B), (C), and (H) satisfied, is proved in the following way. 

Differentiating the budget constraint of the ith individual, we have 

P (,ti - Xi) + ?Pj(xp(X1j X i) = 0. 

From condition (B), EjPiX0 _ 0, and since from (NT) and (H), EjP1 
(Xi1 - Xii) > 0, we have EjPAYtj < 0 in disequilibrium. On the other hand, 
consider i U(Xil,...,Xim). By differentiation with respect to time, we 
have in disequilibrium 

X uE A3 X E= iN EP'XY < 0, cxi; 

where Ai is the marginal utility of income, a positive function of t. From the 
decrease of the sum of utilities in disequilibrium, we can infer quasi-stability 
(See Hahn and Negishi [24]). 

10.2. The question of the existence of a Hahn process, that is, the existence 
of a solution of (NT) under (C), (B), and (H) remains still open. We hope it 
is answered partly by the following example. 

Let us construct an example of a Hahn process where the excess or the 
shortage of commodities is always shared by individuals in constant ratio: 
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(NTH) dP1 = -XI (j I, ... )M 

d-t1- Sk DXV (Xk - - DXs (X - Xk) dt DPk P 

(j 1,...,m 1;i 1,...,n) 

dXim I 
ml P( 1 Xl 

dt Pm j=1 ) 
where the ai's are positive constants such that Sca;- 1, i.e., the ratio by 
which an excess or shortage of commodities is allotted to individuals. 

It is easily verified that this process satisfies conditions (C) and (B). Then 
we know from (B) that 

dXij DXxj DXs1 -- 
dt X - k aP P-k + Zk = E 7 

aPk (Xk - Xk) 

since 

__ k` Dk Di ik 'Xi' E1PkXik O1 

agik 
-E aIi alik aIij 

and from (NTH) we have 

X X0 - c Nx X0ij, j #m M. 

Let us postulate that prices remain constant in the small interval of time 
(0, h), and at t h, as a result of competitive exchange in the interval, we 
have 

Xi1(h) - X0(h) o- X1(z xy(h) - X), for allj. 

Then we have 

X0j(t) - Xi= az(EiXi(t) - X1) for all i, M ; t > h 

and from Walras's law (W) and individual budget constraints, 

Xim(t) - Xim(t) = aid(iXim(t) - Xm), 

for all i, and for t >I h, provided P > O, X > 0. 
Thus (NTH) satisfies condition (H) (Hahn and Negishi [24]). 

1 1. CONCLUDING REMARKS - SUGGESTIONS FOR FURTHER STUDIES 

To conclude this survey, let me state a number of problems which have 
remained rather untouched so far but should be studied extensively here- 
after. 

As is mentioned in Section 4.2 and footnotes 7 and 31, the process of price 
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change in accord with excess demand may not be generally correct except 
in the case of tatonnement in a perfectly organized market. It would seem 
worthwhile to construct various models of a price formation process for the 
less organized markets, i.e., a series of bargains among individuals with or 
without recontract. Study of the non-competitive price formation process 
with price leadership or full-cost-pricing may also be interesting. 

The price formation process can be extended over Hicksian weeks. We 
may cite, for example, the cobweb process, the process with interactions 
between expectations and inventory fluctuations, and the Marshallian 
dynamic process (Section 2.1). The stability of these processes, as well as of 
the magnificent dynamic processes cited in Section 2.1, might well be 
analysed by methods and tools developed in the study of tatonnement and 
non-tatonnement stability. 

The dynamic model analysed in this article has been of differential or 
continuous-time type. Models of difference or discrete-time type have also 
been studied. Models of these two types are simple and convenient from the 
mathematical point of view. The introduction of lagged adjustments 
(Section 2.1), however, will sometimes require the study of general mixed, 
discrete and continuous, time models. 

We discussed in Section 2.2 the need to study stability. It should be 
mentioned that the various reasons given there suggest the need not only 
for stability, i.e., convergence to equilibrium, but also for quick convergence 
to equilibrium. The speed with which the system converges to equilibrium 
must also be estimated.34 

Tokyo University 
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