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}2,~~i-2(n)) - E y (x)
x<z x<n<x+y

2

x< z

we have
THEOREM 1. If y(x) is any function such that lim y(x) = oX, then

x - X

the number of n < z such that the interval (n, n + y(n)) contains no square-
free integer is o(z) as z - o.

THEOREM 2. If lim y(x) = X, and for some X, 0 < X < 1, y(x)/y(Xx)

is bounded, then the normal order of , #2(n) is (6/1r2)y.
x < n 1< x + y

It is interesting to compare these results with the results which hold for

1: ~6x
all n. The formula I 82(n) = 2 + O(Vx) furnishes [x, x + kN/x] as

an interval which always possesses a squarefree number for k sufficiently
large. It was proved independently by a number of mathematicians that
this could be whittled down to [x, x + kx'13], and even to [x, x + kx1'7
log x]. Recently, by means of a novel and ingenious method, Roth5 im-
proved this to [x, x + X3/13 + E]. Although the result is undoubtedly true
for [x, x + xf], the result seems very difficult to establish. In the other
direction it is easy to show that there are infinitely many intervals [x, x +
c log x/log log x] which do not possess a squarefree number.

1 Ingham, A. E., Quart. J. Math., 8, 255-266 (1937).
2 See, for example, E. Landau, Uber einige neuere Fortschritte der additiven Zahlen-

theorie, Cambridge, 1937.
3 Turan, P., J. London Math. Soc., 9, 274-276 (1934).
4 Ingham, A. E., J. London Math. Soc., 2, 202-205 (1927).
Roth, K. F., Ibid., 26, 263-268 (1951).

A SOCIAL EQUILIBRIUM EXISTENCE THEOREM*

BY GERARD DEBREU
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Communicated by J. von Neumann, August 1; 1952

In a wide class of social systems each agent has a range of actions among
which he selects one. His choice is not, however, entirely free and the ac-
tions of all the other agents determine the subset to which his selection is
restricted. Once the action of every agent is given, the outcome of the so-
cial activity is known. The preferences of each agent yield his complete
ordering of the outcomes and each one of them tries by choosing his action
in his restricting subset to bring about the best outcome according to his
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own preferences. The existence theorem presented here gives general con-
ditions under which there is for such a social system an equilibrium, i.e.,
a situation where the action of every agent belongs to his restricting subset
and no agent has incentive to choose another action.

This theorem has been used by Arrow and Debreu2 to prove the existence
of an equilibrium for a classical competitive economic system, it contains
the existence of an equilibrium point for an N-person game (see Nash8 and
Section 4) and, naturally, as a still more particular case the existence of a
solution for a zero-sum two-person game (see von Neumann and Morgen-
stem, Ref. 11, Section 17.6).

In Section 1 the topological concepts to be used are defined. In Section
2 an abstract definition of equilibrium is presented with a proof of the
theorem. In Section 3 saddle points are presented as particular cases of
equilibrium points and in connection with the closely related MinMax
operator. Section 4 concludes with a short historical survey of results
about saddle points, fixed points for multi-valued transformations and
equilibrium points.
Only subsets of finite Euclidean spaces will be considered here.
1. Topological Concepts.-Two sets in Rn are said to be homeomorphic

when it is possible to set up between them a one-to-one bicontinuous (h and
h-1 continuous) correspondence h (called a homeomorphism).
A convex cell C in Rn is determined by r points zk(k = 1, ... r); it is the

set
r r

C = {zlZ = E ;k Zkgk > 0 for k = 1, ..., r, E = 1}.
k=1 k=l

Such a set is closed.
The product of two convex cells A c RI and B c Rm is a convex cell

C c R1+m. Let A be generated by the p points xi (i = 1, . . ., p) and B
by the q points yJ (j = 1, ..., q). Denote by C the convex cell in RI+m gen-
erated by the pq points (xf, y'). Obviously A X B D C, and one shows
easily that A X B c C.
A geometric polyhedron is the union of a finite number of convex cells in

Rn. It is clearly closed.
The product of two geometric polyhedra P, Q is a geometric polyhedron.

p q
Let P= u A4i Q= u B) where the Ai (the Bj) are convex cells in

i=l j=1
RZ(in Rm). The relation P X Q = (u Ai) X ( u Bj) = u (Ai X Bj)

i j ij
proves the result.
A polyhedron is a set in Rn homeomorphic to a geometric polyhedron

(called geometric antecedent of the first one).
The product of two polyhedra is a polyhedron (since it is homeomorphic

to the product of the two geometric antecedents).
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Let I = {tI 0 < t < 1 1 denote the closed interval [0, 1] on the real line.
A nonempty set Z of Rn is said to be contractible, or more precisely, deform-
able into a point z° e Z, if there exists a continuous function H(t, z) (called
a deformation) taking I X Z into Z such that for all z e Z, H(0, z) = z and
H(1, z) = z°.
The product of two sets X c RI, Y c Rn deformable into the two points

x e X, y° e Y, respectively, is clearly deformable into the point (xO, yo).
ee - 1

Finally the real function t = e of the real variable 0 is monotonically

increasing from -1 to +1 when 0 increases from -o to + co. It estab-
lishes a one-to-one correspondence between the closed interval [-1, + 1]
and the set R of all real numbers to which are added two elements - co and
+ ac. Open sets in R are defined as images of the usual open sets in [-1,
+1], an order is defined in R as an image of the usual order in [-1, +1].
R endowed with this topology and this order is called the completed real line
(which can naturally be defined directly5).

2. Equilibrium Points.-Let there be v agents characterized by a sub-
scriptL = 1, ..., v.
The tth agent chooses an action a, in a set 2i, The v-tuple of actions

(a,, . . ., a,), denoted by a, is an element of 2f = ,1X ... X 24. The payoff
to the tth agent is a function f,(a) from 91 to the completed- real line.
Denote further by a, the (v - 1)-tuple (a,, . . ., a,-1, a,+1, . . . ,a,) and by

W, the product 2fX ... X2,X,X 2 X,+,X . .. X2,. Given a, (the actions of
all the others), the choice of the £th agent is restricted to a non-empty, com-
pact set A,(a,) c 21,; the £th agent chooses a, in A,(a,) so as to maximize
f,(a,, a,), assumed to be continuous in a, on A,(d,).

This background makes the following formal definition intuitive:
Definition a* is an equilibrium point if for all & = 1, ..., v a. e A,(a*)

and f,(a*) = Max f,(a*, a,).
at e AL (d*)

The graph of the function A,(a,) is defined as the subset of X1, X ,,
G, = { (a,, a,) a, e A,(a,) }. For any a,, A,(a,) is always understood to be
non-void.
THEOREM. For all = 1, ..., V, let 2, be a contractible polyhedron, A,(a,)

a multi-valued function from , to 2, whose graph G, is closed, f, a continuous
function from G, to the completed real line such that (p,(a,) = Max

a, e AI (ii,)

f,(a,, a,) is continuous. If for every C and a, the set Ma, = {a, e A,(a,)|
f,(a,, a,) = (p,(a,) I is contractible, then there exists an equilibrium point.

The proof uses as a lemma a particular case of the fixed point theorem
of S. Eilenberg and D. Montgomery6 or of the even more general result of
E. G. Begle.3
Let Z be a set and k a function associating with each z e Z a subset +(z)

of Z. We have defined above the graph of 4 as the subset of ZXZ, { (z, z') I
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z'fe(z)}. O is said to be semicontinuous if its graph is closed. A fixed
point of q5 is a point z* such that z* e O(z*).
LEMMA. Let Z be a contractible polyhedron and 4): Z Z a semicontinu-

ous multi-valued function such that for every z e Z the set ck(z) is contractible.
Then q5 has a fixed point.t

2, the product of v contractible polyhedra, is a contractible polyhedron
(Section 1). Define on 21 the multi-valued function q5 as follows:

+(a) = Me,X ... X Map.
Since Ma, is contractible for all t and a,, +(a) is contractible for all a e 21
(Section 1). To be able to apply the lemma it remains only to show that
4 is semicontinuous.
For this first define in 2, X 21, the set

M, = {(a,, a)|Ia, e a1.
The equivalent definition

M, = { (a,, a,) e G,If, aL) = 'P,(a) I
shows that M, is closed since G, is closed and f, and s are continuous.
The graph r of 4) is the subset of 21 X 21

r = {(a, a')Ia' e +(a) = {(a, a')Ia e Ma, foral} -
{(a, a')j (a,, a') e M, for all 4.

Consider the subset of 21 X 21

9~R, = {(a, a')l (a,, a') e M,}
9Y, is closed since M, is. As r = n 9,, r is closed.

The conclusion of the lemma is then that there exists a* e 21 such that
a* e O(a*), i.e., for all t, a* e Ma*; this is the definition of an equilibrium
point a*.

The requirement that jo,(a) be continuous is a joint requirement on the
two functions f, and A,(a,); it is therefore not well adapted to applica-
tions. The following Remark tries to overcome this.
The function A,(a,) is said to be continuous at a° if for any a' e A,(a°)

and any sequence (a) converging to do, there exists a sequence (at) con-
verging to a' such that for all n, a' eA6(dn).
Remark: If A,(a,) has a compact graph G, and is continuous at do, iff,

is a continuous function from G, to the completed real line, then op, (at) is con-
tinuous at do.
We drop subscripts l everywhere and reason as if f took its values in the

real line (the isomorphism r between the completed real line and the
e +1
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closed interval [-1, + 1] immediately extends the results to the general
case).

(a) Using only the compactness of G and the continuity off we first prove:
For any sequence (a0) converging to a° and any e > 0, there is an N such
that n > N implies .p(an) < (p(a0) + e (in other words, rp(a) is upper semi-
continuous at a°).

For every n, choose an e A (a) such that f(dn, an) = (o(an). Since G
is compact it is possible to extract from the sequence (&n, an) a subsequence
(a8', an') converging to (a°, a°).
By the continuity of f, f(a"', an') [which is = po(a"')] tends to f(a°, a°)

[which is < (p(aO)]. Therefore there exists N' such that n' > N' implies
.p(an') < (p(aO) + e. Since from any sequence (an) converging to a° it is
possible to extract a subsequence (an ) having the desired property, any se-
quence (a") converging to a° has the property.

(,B) Using in addition the continuity of A (a) at a° we prove: For any se-
quence (an) converging so a° and any E > 0, there is an N such that n > N
implies .P(an) > P(a0) - E (in other words, (p(a) is lower semicontinuous
at a°).
Choose a0 e A (a°) such that f(a°, a°) = o(aO). By continuity of A (a)

at a°, there is a sequence (an) converging to a° such that for all n, an e

A(a"). By the continuity of f, f(a", a") [which is < po(ad)] tends to
f(a°, a0) [which is = p(aO)]. Therefore there exists N such that n > N
implies p(an) > p(a) -e

(a) and (,B) together naturally prove that sp(a) is continuous at a°.
3. Saddle Points and MinMax Operator.-In this section x e X c RI,

y e Y c Rm and f(x, y) is a function from X X Y to the completed real line.
A saddle point of f is a point (xO, y°) such that

Min f(xO, y) = f(xO, y°) = Max f(x, y0). (1)
y x

It is a very particular case of an equilibrium point for two agents:

a, = x, 2t = X, A1(a1) = X, fi(a) = f(x, y)
a2 = Y, 22 = Y, A2(a2) = Y, f2(a) = -f(x, y)

One obtains therefore by using the remark:
COROLLARY. Let X, Y be two contractible polyhedra, and f(x, y) a con-

tinuous function from X X Y to the completed real line. Iffor every x° e X,
Ux= {y e Y f(xO, y) = Min f(xO, y) } is contractible and for every y° e Y,

Vy,0= {x 6Xff(x, y°) = Maxf(x, y°) I is contractible, thenfhas a saddle point.

This corollary contains as more and more particular cases the saddle
point theorems of Kakutani,7 von Neumann (Ref. 9, p. 307, and 10), and
von Neumann and Morgenstern (Ref. 11, Section 17.6).
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The special interest of saddle points comes from their intimate relation
with the MinMax operator.

From now on X, Y are assumed to be compact and f(x, y) to be continuous.
We know from the Remark that Minf(x, y) [resp., Max f(x, y)] is a con-

Y x

tinuous function of x [resp., y]. The following results, already given in
Ref. 11, Section 13, are proved here for completeness.

(a) MaxMinf(x, y) < MinMaxf(x, y).
x y y x

Let A = {x'I Min f(x', y) = MaxMin f(x, y) }, B = {y'I Max f(x, y') =
y x y x

MinMax f(x, y) .
y x

If x' e A and y' e B,

MaxMin f(x, y) = Min f(x', y) < f(x', y') < Max f(x, y') =
X y y x

MinMaxf(x, y). (2)
x

The result follows from a comparison of the first and last terms.
(b) The existence of a saddle point (xO, y°) implies the equality

MaxMin f = MinMax f[ = f(xO, y°)].
x y y x

From the definition 1 it follows that

MaxMinf(x, y) _ Min f(xO, y) = f(xO, y°) =
x y y

Max f(x, y6) _ MinMax f(x, y) (3)
x y x

which together with (a) gives the result. It also gives Max J(x, y°) =
X

MinMaxf(x, y) i.e., y° e B, and similarly x° e A.
y x

(c) The equality MaxMin f = MinMaxf implies the existence of a saddle
x y y x

point.
Assume that the equality holds and take x° e A, y° e B, Eq. (2) gives Min

(x° y) = f(xO, y°) = Max f(x, y°), which is the definition Eq. (1) of a saddle

point (x°, yO). We have, incidentally, proved
(d) the set of saddle points is either empty or equal to A X B.
4. Historical Note.-A function f(z) from a set Z to the completed real

line R is said to be quasi-convex (resp., quasi-concave) if for any ac e R, the
set of z E Z such thatf(z) < a (resp., f(z) > a) is convex.

Let Sn = {z e RnIzk _ Ofor k = 1, .. .,nand Zk = i}
k=1

VOL. 38, 1952 891



MATHEMA TICS: G. DEBREU

In his first study on the theory of games, J. von Neumann9 proved:
(I). Let f(x, y) be a continuous real-valued function for x e SZ and y E Sm.

If for every x° e S, the function f(xO, y) is quasi-convex, and if for every y°
e Sm the function f(x, yO) is quasi-concave, then f has a saddle point.
In another paper on economics'0 he later proved a closely related lemma

which S. Kakutani7 restated in the more convenient form of the following
(equivalent) fixed point theorem:

(II). Let Z be a compact convex set in Rn and 4: Z -* Z a semicontinuous
multi-valued function such that for every z e Z the set q(z) is non-empty and
convex. Then 4 has afixed point.
The convexity assumptions were, however, irrelevant and S. Eilenberg

and D. Montgomery6 gave a fixed point theorem where convexity was re-
placed by acyclicity. Their result was further generalized by E. G.
Begle.3
These last two theorems deserve particular attention as valuable con-

tributions to topology whose origin can be traced directly to economics.

The notion of an equilibrium point was first formalized by J. F. Nash8
in the following game context. There are v players; the tth player chooses
a strategy s, in Sn,; his payoff is f,(s), a polylinear function of s,, ..., s,.
An equilibrium point is a v-tuple s* such that for all £, f,(s*) = Max

St f Sn,

f(s,*, s,). Nash proved the existence of such an equilibrium point.
* Based on two Cowles Commission Discussion Papers, Mathematics 412 (Nov. 1,

1951) and Economics 2032 (Feb. 11, 1952). This paper has been undertaken as part
of the project on the theory of allocation of resources conducted by the Cowles Com-
mission for Research in Economics under contract with The RAND Corporation. To
be reprinted as Cowles Commission Paper, New Series, No. 64.
One of the main motivations for this article has been to lay the mathematical founda-

tions for the paper by Arrow and Debreu;2 in this respect I am greatly indebted to K. J.
Arrow. Acknowledgment is also due to staff members and guests of the Cowles Com-
mission and very particularly to I. N. Herstein and J. Milnor. I owe to J. L. Koszul
and D. Montgomery references 6 and 3. Finally I had the privilege of' consulting
with S. MacLane and A. Weil on the contents of Ref. 6.

t The statement of E. G. Begle (Ref. 3, p. 546) is indeed much more general and the
existence theorem can accordingly be generalized. Instead of a contractible polyhedron
one might take for example an Absolute Retract (as defined in [Ref..4, p. 222]) using the
fact that the product of two A.R. is an A.R. [Ref. 1, p. 197]. For finite dimensions
"Absolute Retract" is equivalent to "contractible and locally contractible (Ref. 4, pp.
235-236) compact metric space" [Ref. 4, p. 240].,

1 Aronszajn, N., and Borsuk, K., "Sur la somme et le produit combinatoire des re-
tractes absolus," Fundamenta Mathematicae, 18, 193-197 (1932).

2 Arrow, K. J., and Debreu, G., "Existence of an Equilibrium for a Competitive
Economy," Econometrica, in press (1953).

'3 Begle, E. G., "A Fixed Point Theorem," Ann. Math., 51, No. 3, 544-550 (May,
1950).

4 Borsuk, K., "Uber eine Klasse von lokal zusammenhangenden Riaumen," Funda-
menta Mathematicae, Vol. 19 (1932), p. 220-242.
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5 Bourbaki, N., Elments de Mathematique, Premiere partie, Livre III, Chap. IV,
§4, Hermann, Paris, 1942.

6 Eilenberg, S., and Montgomery, D., "Fixed Point Theorems for Multi-valued
Transformations," Am. J. Math., 68, 214-222 (1946).

7 Kakutani, S., "A Generalization of Brouwer's Fixed Point Theorem," Duke Math. J.,
8, No. 3, 457-459 (September, 1941).

8 Nash, John F., "Equilibrium Points in N-Person Games," PROC. NATL. ACAD.
ScI. 36, 48-49 (1950).

9 Neumann, J. von, "Zur Theorie der Gesellschaftsspiele," Math. Ann., 100, 295-320
(1928).

10 Neumann, J. von, "Uber ein okonomisches Gleichungssystem und eine Verall-
gemeinerung des Brouwerschen Fixpunktsatzes," Ergebnisse eines Mathematischen
Kolloquiums, 8, 73-83 (1937), (translated in Rev. Economic Studies, XIII, No. 33, 1-9
(1945-46).

11 Neumann, J. von, and Morgenstern, O., Theory of Games and Economic Behavior,
2nd ed:, Princeton University Press, Princeton, 1947 (lst ed., 1944).

A RELATION BETWEEN POLES AND ZEROS OF A SIMPLE
MEROMORPHIC DIFFERENTIAL FORM AND A CALCULATION
OF CHERN'S CHARACTERISTIC CLASSES OF AN ALGEBRAIC

VARIETY

By E. G. KUNDERT

DEPARTMENT of MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA.

Communicated by S. Lefschetz, August 18, 1952

It is well known' that on a Riemann surface the degree of the divisor of a
differential is always = 2p- 2 = -x. We give here a generalization of
this formula for simple meromorphic differential forms of higher dimensions.

Let a be such a differential form on the complex manifold Mn. We de-
note by c(a) its zero cycle and by s(a) its polar cycle, and by C(a) and
S(a) the cohomology classes of the duals of c(a) and s(a).
THEOREM I: C(a) can be expressed as a polynomial of degree n in S(a) in

the cohomology ring of Mn:

S-C(a) = S'(a) + E rn-k+l*S'(a (1)
k=-

where the cocycles rk are the covariant Chern classes of Mn.
Not only because of Theorem I, but for various other purposes, it is de-

sirable to have a simple method to calculate the Chern classes. We give
such a method for the case of an algebraic variety.
THEOREM II: The Chern classes of an algebraic variety can be determined

by the following formulae: 0
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