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Four Aspects of the Mathematical Theory of 
Economic Equilibrium 
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The observed state of an economy can be viewed as an equilibrium resulting from 
the interaction of a large number of agents with partially conflicting interests. 
Taking this viewpoint, exactly one hundred years ago, Léon Walras presented in 
his Elements d'Economie Politique Pure the first general mathematical analysis of 
this equilibrium problem. During the last four decades, Walrasian theory has given 
rise to several developments that required the use of basic concepts and results 
borrowed from diverse branches of mathematics. In this article, I propose to re­
view four of them. 

1. The existence of economic equilibria. As soon as an equilibrium state is defined 
for a model of an economy, the fundamental question of its existence is raised. The 
first solution of this problem was provided by A. Wald [1933-1935], and after a 
twenty-year interruption, research by a large number of authors has steadily ex­
tended the framework in which the existence of an equilibrium can be established. 
Although no work was done on the problem of existence of a Walrasian equilib­
rium from the early thirties to the early fifties, several contributions, which, later 
on, were to play a major role in the study of that problem, were made in related 
areas during that period. One of them was a lemma proved by J. von Neumann 
[1937] in connection with his model of economic growth. This lemma was refor­
mulated by S. Kakutani [1941] as a fixed-point theorem which became the most 
powerful tool for proofs of existence in economics. Another contribution, due to 
J. Nash [1950], was the first use of that tool in the solution of a problem of socia 
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equilibrium. For later reference we state Kakutani's theorem. Given two sets U 
and Vy a correspondence p from U to V associates with every element ue U, a 
nonempty subset p(u) of V. 

THEOREM. If D is a nonempty, compact, convex subset of a Euclidean space, and p 
is a convex-valued, closed-graph correspondence from D to D, then there is d* such 
that d* G p(d*). 

As a simple prototype of a Walrasian equilibrium problem, we now consider an 
exchange economy with / commodities, and a finite set A of consumers. The con­
sumption of consumer a G A is described by a point xa in R{; the ith coordinate 
x'a of xa being the quantity of the /th commodity that he consumes. A price system 
p is an Mist of strictly positive numbers, i.e., a point in P = Int Rl+; the rth co­
ordinate of/? being the amount to be paid for one unit of the rth commodity. Thus 
the value of xa relative to p is the inner product p • xa. Given the price vector peP, 
and his wealth w G L, the set of strictly positive numbers, consumer a is constrain­
ed to satisfy the budget inequality p-xa ^ w. Since multiplication of p and w by a 
strictly positive number has no effect on the behavior of consumers, we can nor­
malize/?, restricting it to the strictly positive part of the unit sphere S = {pe P\ 
|| ̂ | = 1}. We postulate that, presented with the pair (p, w)e S x L, consumer a 
demands the consumption vector fa(p, w) in R^, and that the demand function fa 

is continuous. If that consumer is insatiable, fa also satisfies 

(1) for every (p, w)eS x L, p-fa(p, w) = w. 

To complete the description of the economy ê, we specify for consumer a an 
initial endowment vector ea G P. Thus the characteristics of consumer a are the 
pair (fa, ea), and ê is the list ((fa, ea))a<=A of those pairs for a e A. Consider now a 
price vector/? G S. The corresponding wealth of consumer a isp-ea; his demand is 
fa(p, P'ea). Therefore the excess demand of the economy is 

F(P) = Ha^A [fa(P,P-ea) - ea]. 

And p is an equilibrium price vector if and only if F(p) = 0. Because of (1), the 
function F from Sto Rl satisfies 

Walras'law.p-F(p) = 0. 
Consequently, F is a continuous vector field on S, all of whose coordinates are 

bounded below. Finally, we make an assumption about the behavior of F near dS. 
Boundary condition. lfpn in £ tends to/?0 in 35, then {F(pn)} is unbounded. 
This condition expresses that every commodity is collectively desired. Here and 

below I freely make unnecessarily strong assumptions when they facilitate the ex­
position. Of the many variants of the existence theorem that have been proposed, 
I select the following statement by E. Dierker [1974, §8], some of whose antecedents 
were L. McKenzie [1954], D. Gale [1955], H. Nikaido [1956], and K. Arrow and 
F. Hahn [1971]. 

THEOREM. If F is continuous, bounded below, and satisfies Wal ras' law and the 
boundary condition, then there is an equilibrium. 
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We indicate the main ideas of a proof because they will recur in this section and 
in the next. Here it is most convenient to normalize the price vector so that it be­
longs to the simplex II = {/? G R{ | S{=X pir = 1} • 

Consider a price vector p $ 377 yielding an excess demand F(p) ^ 0. According 
to a commonly held view of the role of prices, a natural reaction of a price-setting 
agency to this disequilibrium situation would be to select a new price vector so as 
to make the excess demand F(p) as expensive as possible, i.e., to select (K. Arrow 
and G. Debreu [1954]) a price vector in the set 

fi(p) = LeJl\ Tt-F(p) = Max q-F(p)\. 

When p G 9/7, the excess demand is not defined. In this case, we let ft(p) ?= 
{%zll\%*p = fy. 

By Kakutani's theorem, the correspondence^ from /Tto ZThas a fixed point/?*. 
Obviously, p* $ du. But then/?* G fi(p*) implies F(p*) = 0. 

From the fact that fi(p) is always a face of II one suspects (rightly as we will see 
in the next section) that Kakutani's theorem is too powerful a tool for this result. 
But such is not the case in the general situation to which we will turn after having 
pointed out the broad interpretation that the concept of commodity must be given. 
In contemporary Walrasian theory, a commodity is defined as a good or a service 
with specified physical characteristics, to be delivered at a specified date, at a 
specified location, if (K. Arrow [1953]) a specified event occurs. Aside from this 
mere question of interpretation of a concept, the model can be expanded so as to 
include a finite set B of producers. Producer b G B chooses a production vector yb 

(whose positive coordinates correspond to outputs, and negative coordinates to 
inputs) in his production set Yb, a nonempty subset of Rf, interpreted as the set of 
feasible production vectors. When the price vector p is given, producer b actually 
chooses his production vector in a nonempty subset (pb(p) of Yb. It is essential here, 
as it was not in the case of consumers, to provide for situations in which/? does not 
uniquely determine the reaction of every producer, which may arise for instance if 
producer b maximizes his profit/?-^ in a cone Yb with vertex 0 (constant returns 
to scale technology). In an economy with production, consumer a not only demands 
goods and services, but also supplies certain quantities of certain types of labor, 
which will appear as negative coordinates of his consumption vector xa; this vector 
xa is constrained to belong to his consumption set Xa, a given nonempty subset 
of RK A suitable extension of the concept of demand function covers this case. 
However, the wealth of a consumer is now the sum of the value of his endowment 
vector and of his shares of the profits of producers. In this manner, an integrated 
model of consumption and production is obtained, in which a state of the economy 
is a list ((xa)as=A, (yb)b<=B>P) °f vectors of Rl, where, for every a e A, xaeXa; for 
every beB,ybe Yb; and/? G II. The problem of existence of an equilibrium for 
such an economy has often been reduced to a situation similar to that of the 
last theorem, the continuous excess demand function being replaced by an excess 
demand correspondence with a closed graph. Alternatively, it can be formulated in 
the following general terms, in the spirit of J. Nash [1950]. The social system is 
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composed of a finite set C of agents. For each c G C, a set Dc of possible actions 
is given. Consequently, a state of the system is an element d of the product D = 
Xc^c Dc. We denote by dcv the list of actions obtained by deleting dc from d. 
Given dC\c, i.e., the actions chosen by all the other agents, agent c reacts by choosing 
his own action in the set pc(dC\ò- The state d* is an equilibrium if and only if, for 
every ceC, d* G pc(d$Sc). Thus, the reaction correspondence p from D to D 
being defined by p(d) = Xceci°c(̂ c/<?)> the state rf* is an equilibrium if and only if it 
is a fixed point of p. In the integrated economic model of consumption and produc­
tion that we discussed, one of the agents is the impersonal market to which we as­
sign the reaction correspondence y, introduced in the proof of the existence theorem. 
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FIGURE 1 

Still broader interpretations and further extensions of the preceding model have 
been proposed. They include negative or zero prices, preference relations with 
weak properties instead of demand functions for consumers, measure spaces of 
agents, infinite-dimensional commodity spaces, monopolistic competition, public 
goods, redistribution of income, indivisible commodities, transaction costs, money, 
the use of nonstandard analysis,.... Since this extensive, and still rapidly growing, 
literature cannot be surveyed in detail here, I refer to the excellent account by K. 
Arrow and F. Hahn [1971], to the books mentioned in the next sections, and to 
recent volumes of Econometrica, Journal of Economic Theory, and Journal of 
Mathematical Economics. 

2. The computation of economic equilibria. While the first proof of existence is 
forty years old, decisive steps towards an efficient algorithm for the computation 
of Walras equilibria were taken only during the last decade. In 1964, C. Lemke 
and J. Howson gave an effective procedure for the computation of an equilibrium 
of a non-zero-sum two-person game. H. Scarf [1967], [1973] then showed how a 
technique similar to that of C. Lemke and J. Howson could be used to compute an 
approximate Walras equilibrium, and proposed a general algorithm for the 
calculation of an approximate fixed point of a correspondence. This algorithm, 
which has revealed itself to be surprisingly efficient, had the drawback of not per-
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mitting a gradual improvement of the degree of approximation of the solution. An 
essential extension due to C. Eaves [1972], [1974], stimulated by a fixed-point 
theorem of F. Browder [1960], overcame this difficulty. 

Before presenting a version of the algorithm based on H. Scarf [1973], and C. 
Eaves [1974], we note that in the preceding proof of existence, we have actually 
associated with every point/? G II a set A(p) of integers in / = {1, ••• , /} , as follows, 

A(p) = {/1 F*(p) = MaxyF/(/?)} if/? £ 9/7, 

*= {/ | /^-o} ifpedn. 

The point /?* is an equilibrium if and only if A(p*) = /, in other words, if and 
only if it is in the intersection of the closed sets Et- - {/?| i G yl(/?)}. Showing that 
this intersection is not empty would yield an existence proof in the manner of D, 
Gale [1955]. 

We specify our terminology. By a simplex, we always mean a closed simplex, and, 
of course, similarly for a face of a simplex. A facet of an w-simplex is an (n — 1)-
face. For each/? G 77, select now a label /((/?) in A(p). A set M of points is said to 
be completely labeled, abbreviated to cl., if the set l(M) of its labels is /. The label­
ing X is chosen so as to satisfy the following restrictions on dû: 

(a) the set of vertices of II is cl., 
(ß) no facet of /7is cl.1 

The algorithm will yield a cl. set of / points of E whose diameter can be made 
arbitrarily small, and consequently a point of II at which the value of F can be 
made arbitrarily small. 

Let Tbe the part of R{ that is above II, and^" be a standard regular triangulation 

FIGURE 2 

*Here is a simple example of a labeling of dll satisfying those restrictions. Given p e dïï, select 
any l(p) in A(p) such that X(p) - 1 (mod /) is not in A(p). 
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of J1 having for vertices the points of Twith integral coordinates, used by H. Kuhn 
[1960], [1968], T. Hansen [1968], and C. Eaves [1972], and illustrated by the figure. 
(Other considerably more efficient triangulations of, or more appropriately pseudo-
manifold structures on, Thave been used, C. Eaves [1972], [1974].) Give any point 
in 7" the same label as its projection from 0 into If; and say that two (/ — l)-sim-
plexes of <F are adjacent if there is an /-simplex of F of which they are facets. 
Consider now an (/ — l)-simplex s of & with cl . vertices. 

(i) If s — H, s is a facet of exactly one /-simplex of F ; hence there is exactly one 
(/ - l)-simplex of F with cl . vertices adjacent to s. 

(ii) If s T£ JI, because of (ß), s is not in the boundary of T; therefore s is a facet 
of exactly two /-simplexes of F ; hence there are exactly two (/ — l)-simplexes of 3T 
with cl . vertices adjacent to s. 

The algorithm starts from s° = II. Take s1 to be the unique (/ - l)-simplex of 
3T with cl. vertices adjacent to s°. For k > 0, take sk+1 to be the unique (/ - 1)-
simplex of F with cl . vertices adjacent to sh, and other than sk~l. Clearly this al­
gorithm never returns to a previously used (/ — l)-simplex and never terminates, 
Given any integer n, after a finite number of steps, one obtains an (/ — l)-simplex 
with cl . vertices above the hyperplane {peRl\ Til=i Pi = #}• Projecting from 0 
into 77, one obtains a sequence of cl. sets of / points of II whose diameter tends to 
0 as «tends to + oo. 

An approximate fixed point (i.e., a point close to its image) of a continuous 
function from a finite-dimensional, nonempty, compact, convex set to itself can 
be obtained by a direct application of this algorithm. But in order to solve the 
analogous problem for a fixed point of a correspondence, and consequently, for a 
Walras equilibrium of an economy with production, H. Scarf and C. Eaves have 
used vector labels rather than the preceding integer labels. With every point /? of 
II, one now associates a suitably chosen vector l(p) in Rf~l, and one says that a set 
M of points of II is c l . if the origin of R!"1 belongs to the convex hull of X(M). 
As before, the labeling X of II is restricted to satify (a) and (ß), The last two para­
graphs can then be repeated word for word with the following single exception. Let 
a be an /-simplex of F, and s be a facet of a with cl . vertices. Denote by Va (resp. 
Vs) the set of vertices of a (resp. of s). If X(Vff) is in general position in JR /_1, then 0 
is interior to the convex hull of À(VS), and there is exactly one other facet of G with 
cl . vertices. However, if X(Vff) is not in general position, a degenerate case where 
there are several other facets of a with cl . vertices may arise. An appropriate use of 
the lexic refinement of linear programming resolves this degeneracy. In this general 
form, the algorithm can indeed be directly applied to the computation of approxi­
mate Kakutani fixed points. 

The simplicity of this algorithm is very appealing, but its most remarkable feature 
is its efficiency. Experience with several thousand examples has been reported, in 
particular in H. Scarf [1973] and R. Wilmuth [1973]. As a typical case of the version 
of the integer-labeling algorithm presented above (which uses an inefficient triangu­
lation of T), let / = 10. To reach an elevation n = 100 in T, i.e., a triangulation of 
UTor which every edge is divided into 100 equal intervals, the number of iterations 
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required rarely exceeds 2,000, and the computing time on an IBM 370 is usually 
less than 15 seconds. The number of vertices that are examined in the computation 
is therefore a small fraction of the number of vertices of the triangulation of 77 at 
elevation 100. 

The best general reference on the problem discussed in this section is H. Scarf 
[1973], Mathematical Programming is a good bibliographical source for more re­
cent developments, 

3. Regular differentiable economies. The model <f = ((/a, ca))aeA of an exchange 
economy presented at the beginning of § 1 would provide a complete explanation 
of the observed state ofthat economy in the Walrasian framework if the set E(S) of 
its equilibrium price vectors had exactly one element. However, this global unique­
ness requirement has revealed itself to be excessively strong, and was replaced, 
in the last five years, by that of local uniqueness. Not only does one wish E($) to 
be discrete, one would also like the correspondence E to be continuous. Otherwise, 
the slightest error of observation on the data of the economy might lead to an en­
tirely different set of predicted equilibria. This consideration, which is common in 
the study of physical systems, applies with even greater force to the study of social 
systems. Basic differential topology has provided simple and satisfactory answers to 
the two questions of discreteness of E($), and of continuity of E. 

At first, we keep the l is t /= (fa)a<=A of demand functions fixed, and we assume 
that each one of them is of class Cr (r ^ 1). Thus an economy is identified with the 
point e = (ea)a*=A i n PA- We denote by E the set of (e, p)ePA x S such that /? is 
an equilibrium price vector for the economy e, and by E(e) the set of equilibrium 
price vectors associated with a given e. The central importance of the manifold E, 
or of a related manifold of S. Smale [1974], has been recognized by S. Smale [1974] 
and Y. Balasko [1974a]. Recently, Y. Balasko [1974b] has noticed the property of 
Cr-isomorphism to PA. 

THEOREM. E is a O-submanifold of PA x S of the same dimension as PA. If for 
every aeA the range offa is contained in Pt then E is Cr>-isomorphic to PA, 

Now let % be the projection PA x S -+ PA, and * be its restriction to the mani­
fold E. 
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DEFINITION. The economy & = (/, e) is regular if e is a regular value of jt. It is 
critical if it is not regular. 

By Sard's theorem, the set of critical e has Lebesgue measure zero. Suppose in 
addition we assume that every demand function fa satisfies the 

Strong boundary condition. If (/?„, wn) in S x L tends to (pQ, WQ) in dS x L, then 
{fa(Pn> w*)} i s unbounded. 

Then we readily obtain that jt is proper (Y. Balasko [1974b]). In this case the 
critical set is closed (relative to PA). It is therefore negligible in a strong sense. As 
for economies in the regular set (%, the complement of the critical set, they are well 
behaved in the following sense. At e G <%, the compact set E(e) = %~l(e) is discrete, 
therefore finite, and %~l is locally a Cr-diflfeomorphism. 

In order to prepare for the discussion of regular economies in the context of the 
next section, we note an equivalent definition (E. and H. Dierker [1972]) of a critical 
point of the manifold E for %. Given e, let F(p) be the excess demand associated 
with/?, and denote by F(p) the projection of F(p) into some fixed (/ — ^-dimension­
al coordinate subspace of Rl. Because of Walras' law, and because /? is strictly 
positive, F(p) = 0 is equivalent to F(p) = 0. Let then J[F(p)] be the Jacobian deter­
minant of F at /?. As Y. Balasko [1974b] shows, (e, p) is a critical point of % if and 
only if/[F(/?)] = 0. 

Since it is desirable to let demand functions vary as well as initial endowments 
(F. Delbaen [1971], E. and H. Dierker [1972]), we endow the set D of C demand 
functions (/* ^ 1) satisfying the strong boundary condition with the topology of 
uniform Cr-convergence. 

An economy ê is now defined as an element of (D x P)A, a regular element of 
the latter space being a pair (/, e) for which the Jacobian determinant introduced 
in the last paragraph is different from zero for every equilibrium price vector as­
sociated with (/, e). The regular set is then shown to be open and dense in (D x P)A. 
Another extension, by S. Smale [1974], established the same two properties of the 
regular set in the context of utility functions with weak properties, rather than in the 
context of demand functions. 

Still further generalizations, for instance, to cases where production is possible, 
have been obtained. E. Dierker [1974] surveys a large part of the area covered in 
this section more leisurely than I did. Recent volumes of the three journals listed 
at the end of §1 are also relevant here. 

4. The core of a large economy. So far the discussion of consumer behavior has 
been in terms of demand functions. We now introduce for consumer a the more 
basic concept of a binary preference relation rèa on Rl

+, for which we read "x ^ s 

y" as "for agent a, commodity vector y is at least as desired as commodity 
vector x." The relation of strict preference "x <ay" is defined by "x ^ ß y and not 
y 7èa x" and of indifference "x ~a y" by "x -£a y and y ^ ß x." Similary, 
for two vectors x, y in R! we denote by "x ^ y" the relation "y — x G Rl

+" 
by "x < y" the relation "x ^ y and not y ^ x" and by "x < y" the relation 
"y- xeP." 
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We assume that ^ f l is a complete preorder with a closed graph, and that it 
satisfies the monotony condition, x < y implies x <ay, expressing the desirability 
of all commodities for consumer a. The set of preference relations satisfying these 
assumptions is denoted by &, and viewing an element of 0> as a closed subset of 
R2i, we endow & with Hausdorff's [1957] topology of closed convergence (Y. 
Kannai [1970]), 

The characteristics of consumer a e A are now a pair (^ff, ea) of a preference 
relation in 0>, and an endowment vector in Rl+. Thus an exchange economy $ is 
a function from A to & x Rl+, The result of any exchange process in this economy 
is an allocation, i.e., a function x from A to R{, that is attainable in the sense 
that JjaeA Xa = Ha^A ea* 

A proposed allocation x is blocked by EL coalition E of consumers if 
(0 E * 0 , 

and the members of E can reallocate their own endowments among themselves so 
as to make every member of E better off, i.e., if 

(ii) there is an allocation y such that S ß e ^j f l = Tia^E ea and, for every aeE, 
xa <aya. 

From this viewpoint, first taken by F. Edgeworth [1881], only the unblocked 
attainable allocations are viable. The set of those allocations is the core C(g) of 
the economy. The goal of this section is to relate the core to the equilibrium con­
cept that underlies the analysis of the first three sections. Formally, we define a 
Walras allocation as an attainable allocation x for which there is a price system 
/? G U such that, for every a G A, xa is a greatest element for ^ f l of the budget set 
{zeRl+\p<z<>p'ea}. 

The set of Walras allocations of ê is denoted by W(S). It satisfies the mathe­
matically trivial but economically important relation W(ê) c C(S). 

Simple examples show that for small economies the second set is much larger 
than the first. However, F. Edgeworth [1881] perceived that as the number of agents 
tends to + oo in such a way that each one of them becomes insignificant relative to 
their totality, the two sets tend to coincide. The conditions under which F. 
Edgeworth proved his limit theorem were very special. The first generalization 
was obtained by H. Scarf [1962], after M. Shubik [1959] had called attention to 
the connection between F. Edgeworth's "contract curve'' and the game-theoretical 
concept of the core. The problem was then placed in its natural setting by R. Au-
mann [1964], The agents now form a positive measure space (A,stf,v) such that 
v(Ä) = 1. The elements of sé are the coalitions, and for E e sé, v(E) is interpreted 
as the fraction of the totality of agents in coalition E. Since the characteristics of an 
agent a G A are the pair (-£a, ea), an economy ê is defined (W. Hildenbrand [1974]), 
as a measurable function from A to ^ x R{ such that e is integrable. The defini­
tions of an unblocked attainable allocation and of a Walras allocation are extended 
in an obvious fashion. As trivially as before W(S) c C($). But in the case in 
which the space of agents is atomless, i.e., in which every agent is negligible, R. 
Aumann [1964] has proved the 
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THEOREM. If the economy $ is atomless and \Aedv> 0, then W(£) = C($). 

This remarkable result reconciles two fundamental and a priori very different 
equilibrium concepts. Its proof can be based (K. Vind [1964]) on Lyapunov's 
theorem on the convexity of the range of an atomless finite-dimensional vector 
measure. 

There remains to determine the extent to which the equality of the core and of 
the set of Walras allocations holds approximately for a finite economy with a 
large number of nearly insignificant agents. This program is the object of W. 
Hildenbrand [1974], one of whose main results we now present. 

Letting K = & x R | be the set of agents' characteristics, we introduce the 
basic concepts associated with the economy ê that we need. The image measure 
H = » o <f-i of v via ê is a probability on K called the characteristic distribution 
of ê. Given an allocation x for ê (i.e., an integrable function from A to Rf+)9 

consider the function yx from A to K x R{ defined by yx(a) = (ê(a), x(a)). The 
image measure v ° y~x of y via yx is a probability on K x Rl+ called the charac­
teristic-consumption distribution of x. We denote by @w($) the set of characteris­
tic-consumption distributions of the Walras allocations of ê, and similarly by 
^c(<f) the set of characteristic-consumption distributions of the core allocations 
of ê. Finally, we formalize the idea of a competitive sequence of finite economies. 
#An will denote the number of agents of in, jun the characteristic distribution 
of ên, and pr2 the projection from K into Rl

+. The sequence (é?n) is competitive if 
(i) #An -> + oo, 
(ii) ftn converges weakly to a limit pt,, 

(iii) lpr2d(jLn-+ \pr2dfi> 0. 
We denote by ëf the economy defined as the identity map from K, endowed 

with its Borei ^-field 8$(K), and the measure fi, to K. Then, endowing the set of 
probability measures on K x Rl

+ with the topology of weak convergence, we 
obtain the theorem of W. Hildenbrand [1974, Chapter 3]. 

THEOREM. If the sequence (<gn) is competitive, and U is a neighborhood of Bw(iy), 
then, for n large enough, @c($n) c ^ 

To go further, and to obtain full continuity results, as well as results on the rate 
of convergence of the core of $n, we need an extension (F. Delbaen [1971], K. 
Hildenbrand [1974], and H. Dierker [1974]) of the concepts and of the propositions 
of § 3 to the present context of a measure space of agents. Specifically, we place 
ourselves in the framework of H. Dierker [1974]. In addition to being in ^ , the 
preference relations of consumers are now assumed to satisfy the following condi­
tions. For every point x G P, the preference-or-indifference set {y G P | X ^ y) is 
convex, and the indifference set I(x) — {y G p | y ~ x] is a C2-hypersurface of 
P whose Gaussian curvature is everywhere nonzero, and whose closure relative 
to Rl is contained in P. Finally denoting by g(x) the positive unit normal 
of I(x) at the point x, we assume that g is Cl on P. These conditions make it 
possible to identify the preference relation ^ with the C1 vector field g on P. 
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The set G of these vector fields is endowed with the topology of uniform C1 con­
vergence on compact subsets. M then denotes the set of characteristic distributions 
on G x P with compact support. The assumptions that we have made imply 
that every agent has a C1 demand function. Therefore it is possible to define 
a regular element JU of M as a characteristic distribution fj, in M such that the 
Jacobian determinant introduced in §3 is different from zero for every equilibrium 
price vector associated with ft. Having suitably topologized the set Jt> one can 
give, in the manner of H. Dierker [1974], general conditions under which the 
regular set is open and dense in M. 

In this framework, the following result on the rate of convergence of the core of 
an economy has recently been obtained (B. Grodal [1974]) for the case in which the 
agents' characteristics belong to a compact subset Q of G x P. For a finite set A, 
dA denotes the metric defined on the set of functions from A to Rf by dA(x, y) = 
MaXßÊ H X(ö) - y(a) ||, and öA(X, Y) denotes the associated Hausdorff dis­
tance of two compact sets X, Y of functions from A to RK In the statement of the 
theorem, MQ denotes the set of characteristic distributions on Q with the topology 
of weak convergence. 

THEOREM. If Q is a compact subset of G x P, and ft is a regular characteristic 
distribution on Q, then there are a neighborhood V of ft in MQ, and a real number 
k such that for every economy $ with a finite set A of agents, and whose characteristic 
distribution belongs to V, 

ÒA[C(£\W(£)} gklU. 
Thus if (Sn) is a competitive sequence of economies on g, and if the limit 

characteristic distribution is regular, then öA* [C((fM), W(&n)] tends to 0 at least 
as fast as the inverse of the number of agents. 

The basic reference for this section is W. Hildenbrand [1974]. 
The analysis of Walras equilibria, of the core, and of their relationship has 

yielded valuable insights into the role of prices in an economy. But possibly of 
greater importance has been the recognition that the techniques used in that analysis 
are indispensable for the mathematical study of social systems : algebraic topology 
for the test of existence that mathematical models of social equilibrium must pass; 
differential topology for the more demanding tests of discreteness, and of conti­
nuity for the set of equilibria; combinatorial techniques for the computation of 
equilibria; and measure theory for the study of large sets of small agents. 
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