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I. - The proof of the existence of an equilibrium for a com- 
petitive economy is given by Arrow and Debreu [I] and many others 
such as Gale [4], Kuhn [6], McKenzie [8], [ g ] ,  and Nikaido [IO]. 
In this note, we shall give another proof of the existence of an equi- 
librium, putting emphasis on the welfare aspect of the competitive 
equilibrium (1). 

As is well known, an equilibrium point of an economic system 
under perfect competition is an efficient state in Pareto's sense in 
which we cannot make anyone better off without making someone 
worse off. In other words, i t  can be said that a competitive equi- 
librium is a maximum point of some properly defined social welfare 
function subject to the resource and technological constraints. 

In  the following, we shall show that a competitive equilibrium 
is a maximum point of a social welfare function which is a linear 
combination of utility functions of consumers, with the weights in 
the Combination in inverse proportion to the marginal utilities of 
income. Then, the existence of an equilibrium is equivalent to the 
existence of a maximum point of this special welfare function. 
Therefore, we can prove the former by showing the latter. 

2. - Let us construct our economic model, the existence of 
whose equilibrium we shall prove, as follows. Let there be m goods, 
n consumers, and I firms. Let x ,  be a consumption vector (whose 
element is x t t 2  o), xi be an initial holding vector (whose element 
is ;,, 3> o), and U c  (x,) be the utility (function) of the i th consumer. 
Let y k  be a production vector of the kth firm whose element y k r  > o 
(< 0)  is the output (input) of the i th good, and Y k  be the possible 
set of y k ,  i. e., the set of y k  which satisfies the restriction on pro- 
duction F k  (ye) >_ 0. Let P (whose element P , 2  0)  be the price 
vector. For a non-free good, P,  > 0 .  Let h i k  be the proportion of 
profit o i  the k t h  firm distributed to the i t h  consumer. 

We define an equilibrium point under perfect competition: 
Definition I. The following are the conditions of an equilibrizcm 

point (x i  j y k ,  P): 

(l) .The author wishes to express his gratitude to Prof. K. J. Arrow and 
Mr. H. Uzawa, both of Stanford University, for their valuable suggestions. 
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a)  Equalities of demand and supply for non-free goods: 

._ - xi %if - c k  y k $  - xi ,  5 0 # Pj ( X i  xi5 - C k  y k j  - X i j )  = 0 > 

for j = I ,  ... , m .  

b )  The equilibrium of consumers: xi is a maximum point of 

zj P# xi, 5 cj pj X i j  + max [o , C, iki C, P,  y k , ]  = Mj , 
for i = I ,  ... , n .  

c) The equilibrium of firms: y, is a maximum point of Cj 

Ui ( x i )  .subject to 

P, y k f  subject to  
F k  ( y i )  2 0 ( y k  E YL) , for k = 1 I ... I t ' .  

Next, we define a welfare maximum point as follows: 
Definition 2 .  Consider the weighted sum of utility functions 

X i  cc, Ui (xi) with weights a i r  0 ,  i = I , ... , n , I;( ui = I , as a 
social welfare function. We call a point ( x i ,  y , ) ,  which maximizes 
it, subject to the condition of r10 excess of demand over supply, 
x i  xi 5 + C k  y k  , and production subject to the restriction on 
Fk ( y k )  2 o , k..= I , ... , r , a welfare maximum point. 

3. - The assumptions on utility functions and production 
restrictions are as follows: 

Assumption I. U, ( x i )  is continuous, increasing, and concave; 
more precisely, we can make it concave by a strictly positive mo- 
notone transformation. See Fenchel [ 3 ] .  

Roughly speaking, this assumption implies that, among utility 
functions which satisfy the same indifference map, there is a utility 
function with non-increasing marginal utility. 

Assumption 2 .  Fk ( y k )  is continuous and concave, and 
F k  ( y * k )  > o for some y ' k  such that I;, Y ' k  < xi Xi (2).  Furthermore, 
the sets Y k  and their vector sum Y sati'sfy the followvhg conditions: 
o E Y , ,  Y n B = o ( B  isaclosedpositive orthant), Y n (- 3') = 0 .  

The concavity of F ,  implies non-increasing returns. The 
conditions on Y k  and Y are explained in Arrow and Debreu [I], 
p. 276. 

We get from Assumption 2 and the conditions of no excess 
of demand over. supply in Definition 2, or equalities of demand 
and supply for non-free goods in Definition I, the following lemma: 

Lemma I. The domain of x i  and y k  can be restricted as xi E T i ,  
y I  E Tr , Ti , T r  being suitably large convex, compact sets, without 
causing any change in the definitions of a welfare maximum point 
and an equilibrium point ("). 

Other lemmas we shall use in this paper are: 

(*) This condition is needed for the application of the Kuhn-Tucker 

(a) Arrow and Debreu [rJ, pp. 276,  277. 279. 

~- 

Theorem. See Lemnia z below. 
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Lemma 2 .  (Kuhn-Tucker Theorem) Let f (x) and g (x) = 

= { g, (x) , ... , g, ( x )  } be concave in x 2 o and g (x) satisfy Slater's 
condition that there is a vector x0 such that x O 2  o and g (xo)  > 0. 
Then x maximizes f ( x )  subject to the restrictions that x 2  o and 
g (x) 2 o if, and only if, there is a vector such that (G , G) is a 
non-negative saddle point of the Lagrangian Q ( x  , u) = f (x) + 
+ u . g ( x ) ,  i.e., ' p ( x ,  G ) < ' p ( X , < ) i c p ( x ,  tx) for all x 2 0  and 
.u> o . See Kuhn and Tucker [7] and Arrow, Hurwicz and Uza- 
wa [21, PP- 32-37. 

Lemma 3.  (Kakutani's Fixed Point Theorem) Let K be a 
1 ,  

compact convex set in n dimensional Euclidian, space Rn and f ( x )  
be a point-to-set, upper semi-continuous mapping from K into K ,  
whose image is non-void and convex. Then, there is a fixed point 

such that ;I: = f (i). See Kakutani [5] and Nikaido [IO]. 

4. - We are now in the position to state the following theo- 
rems on a welfare maximum point. 

THEOREM I. For a n y  set of weights M ,  , there is a welfare ma- 
ximztin point zrnder Assi~m$tions I and 2 .  

Proof. From Assumption I and Definition z the social welfare 
function is continuous. From Lemma I the domain IS compact. 
As a continuous function on the compact domain the social welfare 
function has a maximum. 

THEOREM 2 .  A welfare mnximiriit point i s  a saddle point of 

'p ( X I  r yk > pf I pk) xf 01, us ( x i )  - x f  p ,  ( x s  x t z  - x k  ykf  - xf ; a , )  + + Ck p k  F ,  (J'x) 

where x . 2  0 ,  y k  are maximizing variables and P,> o , pk> 0 ,  are 
minimizing variables. The necessary and szt ficient condition for i t  
is as follows ( I ) :  

a , U ~ ~ j - P j > o ,  x T U i &  - P j < o ,  f o r i = I ,  ..., lz, j = I ,  ..., m .  
P j  + pk F;;kj2  0 ,  P,  + pk Fi:kj 5 0 ,  for k = I , ... , Y , j = I , ... , m . 

for j = I ,  ... , m .  
xi xzj - x k  yl.1 - x, xtj 5 0 j pj (xz x s j  - x L  ykj - c t  X i , )  = 0 > 

p& Fk (yl.) = 0 Fk ( y k )  2 0 ,  
for k = I ,  ... , Y .  

Proof. By putting x, = 0 ,  the assumption Fk ( y k )  > 0 ,  
x k  Y*k < x X, , guarantees the satisfaction of Slater's condition in 
Lemma 2 .  Then we can apply the Kuhn-Tucker Theorem. The 
second half of the theorem follows from the definition of the saddle 
point. 

(4) Here UG!, stands for the left-hand derivative of U ,  with respect 
to x , j .  
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5. - Next, we shall prove the following theorems on a compe- 

THEOREM 3.  Conditions b), c) of a n  equilibrium #oint in Defi- 
titive equilibrium point. 

nition I can be written resfiectively in the following form: 
b') x, i s  a saddle #oint of 

' p z  (x .  I 6,) = u, (xs) - 6 ,  ( X ,  p ,  xi, - M,) 

where x, 2 o are maximizing variables and 6 , 2  o are minimzzing 
vaviables. The  necessary and suscient  condition for i t  is: 

ult, + ', pj> > u i ~ ,  - 'j 5 J for j = I ,  .... , m 
xj Pj x,j - M *  = 0 

c') y k  i s  a saddle poznt of 

' p k  (yk > p h )  p ,  yhl - pk F k  (yk) 

where yk are maximizing variables and pa> 0 are minimiziag varia- 
bles. 

for i = I ,  ... , m ,  
The aecessary and suficient condition for i t  i s :  

- FkYE, -O 2 0 ,  P, - pk F l : k j I  0 ,  

FA (yi) 2 0 . 
- 

Proof. b)  --* b'). x, > o implies A [ ,  > o . Then, putting x, = 0 ,  
Slater's condition in Lemma 2 can be satisfied and the Kuhn-Tucker 
Theorem can be applied. 

c )  --* c'). The assumption F ,  (y*J > o implies Slater's condi- 
tion and the Kuhn-Tucker Theorem can be applied. 

THEOREM 4. At any  welfare m a x i m u m  fioint, the conditzons a), 
c), of a n  equilibrium in Definition I are satisfied. 

Proof. Compare Definitions I and 2 and use Theorem, 2 and 
the second half of Theorem 3.  

6. - From Theorem 4 we know that if condition b)  of an equi- 
librium is satisfied at a welfare maximum point for some set of 
weights a , ,  then it is an equilibrium point. We have to seek such 
a set of weights. 

a )  For any point a = (al, ... , am) on the n - I dimensional 
simplex 3 - 1  we get a welfare maximum point (xot y o I : ,  Poj,  P " k )  

and, by P'Q, = Poj[ Z, Poj , we have (xoi , yor  , P'O), where Pro  E Sm-'. 
b) By a )  and Lemma I, i t  can be considered that all ( x i ,  

y a ,  P)  are contained in a convex compact set K = IIc Tt X T I r  
rk x s1-1. 

For this, we construct the following mapping: 

We can take a positive number A such that. 

for any ( x i ,  yk , P)  E K .  
For any a €  .W1, ( x , ,  y k ,  P) € K ,  by 

Z d I M i  - X j  P, zit[< A 
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we get un = (or:, , ... , unn) IE Sn-'. 

compact set into itself 
c) Combining a) and b ) ,  we have a mapping from a convex 

9 - l ~  K € (U , x i ,  y k  , P )  + (a", x 0 i ,  y o . ,  P'") € 9 - l ~  K . 

7. - We shall prove that this mapping has a fixed point and 
that the corresponding welfare maximum point is an equilibrium 
point and so establish the following existence theorem for an equi- 
librium : 

THEOREM 5 .  Under Assumptions I and 2 ,  there is an equili- 
brium point. 

Proof. A .  The mapping has a fixed point. 
I) The point-to-set mapping u 9 - l -  ( x o i ,  y o k ,  Poj) is the 

mapping from u to the saddle points of, 

p (xi > yk > pj > p k )  xi ui ui ( x i )  - xj pj (x i  xi) - 2, ykj - c $ x i i )  + x k  11.. Fk ( y k )  

in.Theorem 2. It is con- 
vex because its elements are saddle points of a convex-concave 
function. This mapping is upper semi-continuous because if we 
have converging sequences un+ uO, ( x o n i ,  yank, Ponj F o n k )  --* ( x o o i ,  
y o o k ,  Pooi, poox), and for each n , ( x o n i ,  y o n k ,  Poni, ponk) is a saddle 
point of 'p corresponding to an, then ( z o o i ,  y o o x ,  P o o j ,  Po",+) is a saddle 
point of 'p corresponding to uo. The normalizing mapping Po--* P'" 
preserves upper semi-continuity and convexity. 

2)  (u , xi, y k  , P) -+ u" is a point-to-point mapping and 
continuous. 

3) From I, 2, the mapping (a, x i ,  y k ,  P)  + (u", x o i ,  y o n : ,  
P'o) is an upper semi-continuous mapping from convex compact 
set 9 - 1 ~  K into itself whose image-is non-void and convex. The- 
refore, there is a fixed point 6 ,  ;*, T k ,  F), from Kakutani's Fixed 
Point Theorem, in Lemma 3. 

€3. The . fixed point ' (i , x i ,  y r  , F )  is an equilibrium point. 
The - point &, , Tk , 3) is, the welfare maximum point corresponding 
to a .  Therefore, to demonstrate that it is also an equilibrium point, 
it is sufficient to show that condition b)  is satisfied. In order - -  to see 
this, we first note that M t  = Zj PjxiL+ - & A i k  I;iZ'jykj = 

must be of equal sign by the construct on of the mapping and from 
Theorem 2 ,  

From Theorem I, its image is non-void. 

- - - -  

- _  
- -  - - -  - -  

- - 2;, PI x i ,  ("). This is because J?, - Zj  P j  xi, i = I , ... , n , 

(s) Here it must be noted all Z k h k i  Cj P j y k i  obtained from Po and pr  
are non negative. 
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- - - - - - _  

Ci (Cj P ,  xi, - Gi) = c, P ,  (C, xij - c, y k ,  - xi X i j )  = 0 .  
L - -  - 

From Theorem 2, (gf, y e ,  p )  satisfies the following conditions, 
1 = I ,  ...) m. 
z = I ,  ... , n for . 

Because of the assumption of M i  > o we are sure zi > 0. 
Therefore we get 

I -  I -  = I ,  ... , m. 
Mi U, 

u;, - - - P,< 0 ,  u;;, - -- P >  0 ,  for . z == I ,  ... , n 

- I 

a, 
Replacing by & ,  we get 

_ -  _ -  - 
These, together with Bi = E, P,  x i j ,  i = I , ... , n ,  are the 

necessary and sufficient conditions of b)  as is shown in Theorem 3. 
It is well known that ai is the so called marginal utility of in- 

come of the iih consumer. Thus, we proved the existence of an equi- 
librium for a competitive economy as a welfare maximum point, 
with the weight of a consumer being in inverse relation to the equi- 
librium marginal utility if income. 
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