
A GENERALIZATION OF BROUWERS FIXED POINT THEOREM

BY SHIZUO IAKUTANI
The purpose of the present paper is to give a generalization of Brouwer’s fixed

point theorem (see [111), and to show that this generalized theorem implies the
theorems of J. yon Neumann ([2], [3]) obtained by him in connection with the
theory of games and mathematical economics.

1. The fixed point theorem of Brouwer reads as follows" if x ---, e(x) is a
continuous point-to-point mapping of an r-dimensional closed simplex S into itself,
then there exists an Xo e S such that Xo e(Xo).

This theorem can be generalized in the following way" Let (S) be the family
of all closed convex subsets of S. A point-to-set mapping x - (x) (S) of S
into (S) is called upper semi-continuous if x -- Xo, Yn e ffP(Xn) and y --+ y0

imply y0 e (x0). It is easy to see that this condition is equivalent to saying
that the graph of (x)" x >< (x)is a closed subset of S >< S, where X

denotes a Cartesian product. Then the generalized fixed point theorem may be
stated as follows"

THEOREM 1. If X -- (x) is an upper semi-continuous point-to-set mapping of
an r-dimensional closed simplex S into (S), then there exists an Xo e S such that
Xo (Xo).

Proof. Let S(n) be the n-th barycentric simplicial subdivision of S. For
each vertex x of S(n) take an arbitrary point yn from (Xn). Then the mapping
X yn thus defined on all vertices of S(n) will define, if it is extended linearly
inside each simplex of S(), a continuous point-to-point mapping x -- (x) of
S into itself. Consequently, by Brouwer’s fixed point theorem, there exists an
x S such that x o(x). If we now take a subsequence {x ( 1, 2,
of {x} (n 1, 2, which converges to a point x0 e S, then this x0 is a re-
quired point.

In order to prove this, let A be an r-dimensional simplex of S(n) which con-
tains the point x.. (If x lies on the lower-dimensional simplex of S(’), then
A is not uniquely determined. In this case, let Am be any one of these sim-
plexes.) Let x, x, x be the vertices of A. Then it is clear that the
sequence {x} ( 1, 2,... converges to x0 for i 0, 1,..., r, and we

havexn x for suitable {} (i 0, 1,...,r; n 1, 2,...) with

, >- 0 and , 1. Let us further put y$ (x) (i 0, 1,...,r;
i-----0
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n l, 2,...). Then we have yeq(x) and x (x) .hy for
i-----0

n 1, 2,... Let us now take a further subsequence {nr} ( 1, 2,
of /n} ( 1, 2, such that {y’} and {h’} ( 1, 2, converge for
i 0, 1, r, and let us put lim y’ y and lira h. ),,o. for i 0, 1, r.

Then we have clearly X => 0, X 1 and x0 ),y Since x - x0,
i-----0 i-----0

y; e q(x ’) and y’ -- y for i 0, 1,..., r, we must have, by the upper
semi-continuity of (x), y e (x0) for i 0, 1, ..., r, and this implies, by

q(x0). Thus the proof of Theorem 1the convexity of q(x0), that x0 hiyi e
i=0

is completed.
Remark. It is easy to see that Brouwer’s fixed point theorem is a special

case of Theorem 1 when each q(x) consists only of one point (x). In this case,
the upper semi-continuity of q,(x) is nothing but the continuity of (x).
As an immediate consequence of Theorem 1 we have

COROLLARY. Theorem 1 is also valid even if S is an arbitrary bounded closed
convex set in a Euclidean space.

Proof. Take a closed simplex S which contains S as a subset, and consider
a continuous retracting point-to-point mapping x -- k(x) of S’ onto S.
(k(x) x for any xS and (x) eS for any xeS’.) Then x-- q((x)) is
clearly an upper semi-continuous point-to-set mapping of S’ into g(S)

_
(S’).

Hence, by Theorem 1, there exists n x0 e S’ such that x0 e q,((x0)). Since
q(q(x0))

_
S, we must have x0 e S and consequently, by the retracting property

of b(x), x0 e q(x0)

_
S. This completes the proof of the corollary.

2. THEOREM 2. Let K and L be two bounded closed convex sets in the Euclidean
spaces R and R respectively, and let us consider their Cartesian product K )< L
in R"+. Let U and V be two closed subsets of K )< L such that for any Xo e K
the set U of all y e L such that (Xo y) e U, is non-empty, closed and convex,
and such that for any yo e L the set Vo of all x e K such that (x, yo) V, is non-
empty, closed and convex. Under these assumptions, U and V have a common
point.

Proof. Put S K X L, and let us define a point-to-set mapping z -- (z)
of Sinto(S) as follows: (z) V Uifz (x,y). Since Uand Vare
both closed by assumption, q)(z) is clearly upper semi-continuous. Hence, by
the corollary of Theorem 1, there exists a point z0 K ) L such that Zo (z0).
In other words, there exists a pair of points x0 and y0, x0 K, y0 L such that
(x0, y0) Vo X Uo or equivalently, x0 V and yo Uxo This means that
z0 (x0, y0) e U. V, and the proof of Theorem 2 is completed.

Remark. Theorem 2 is due to J. yon Neumann [3], who proved this by using
a notion of integral in Euclidean spaces. The proof given above is simpler.
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This theorem has applications to the problems of mathematical economics as
was shown by J. von Neumann.

THEOREM 3. Let f(x, y) be a continuous real-valued function defined for x e K
and y e L, where K and L are arbitrary bounded closed convex sets in two Euclidean
spaces R and Rn. If for every Xo e K and for every real number a, the set of all
y e L such that f(xo, y) -<- a is convex, and if for every yo e L and for every real
number , the set of all x e K such that f(x, yo) >= is convex, then we have

max rain f(x, y) min max f(x, y).
xeK yeL ye L xeK

Proof. Let U and V be the sets of all z0 (x0, y0) eK L such that
f(xo, yo) rain f(xo, y) and f(xo, yo) max f(x, yo) respectively. Then it is

yeL xeK

easy to see that both U and V satisfy the conditions of Theorem 2. Hence,
by Theorem 2, there exists a point z0 (x0, y0) e K L such that z0 e U. V
or equivalently, f(xo, yo) min f(xo, y) max f(x, yo). Consequently, we

yeL xeK

have min maxf(x, y) <= maxf(x, yo) f(xo y0) minf(xo y) <= max minf(x, y).
yeL xeK xeK yeL xeK yeL

Since it is clear that we have min max f(x, y) >= max rain f(x, y), the proof of
yeL xeK xeK yeL

Theorem 3 is completed.
Remark. Theorem 3 is one of the fundamental theorems in the theory of

games developed by J. von Neumann [2].
In concluding this paper I should like to express my hearty thanks to Dr.

A. D. Wallace for his kind discussions on this problem. He has also obtained
analogous results for trees. (A. D. Wallace [4].)
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